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HARMONICS AND POWER PHENOMENA 

Electrical quantities such as voltages, currents, or magnetic 
fluxes with a waveform that repeats in time cycle after cycle 
are called periodic quantities. Usually the shortest cycle of the 
repetition is called a period. The number of periods per second 
is referred to as the fundamental frequency. The voltage pro-
duced by power plants usually changes as a sinusoidal function 
of time or it is very close to such a waveform. Periodic quan-
tities that do not vary as a sinusoidal function are referred to as 
nonsinusoidal quantities.  

The waveform of a periodic quantity can be specified by a 
uniformly spaced sequence of instantaneous values of this 
quantity over a single cycle. Such a sequence describes the 
quantity in the time-domain. The number of samples needed 
for the waveform specification depends on the variability of the 
quantity. This number increases with the increase of the 
quantity's variability.  

Periodic quantities in electrical systems can be expressed as 
the sum of an infinite number of sinusoidal components, each 
having a frequency equal to an integer multiple of the funda-
mental frequency, called harmonics. Such a sum is referred to 
as a Fourier series. It is named after Jean B. Fourier, who 
developed the concept in 1822.  

Harmonics are artificial, mathematical entities, convenient 
for handling periodic quantities and systems with such quanti-
ties, in particular, electrical systems with nonsinusoidal volta-
ges and currents. The decomposition of voltages and currents 
into harmonics is a decomposition into components that do not 
exist physically, therefore, harmonics must be used very care-
fully. Some phenolmena − for example, current flow in linear 
circuits − can be studied successfully with a harmonic-by-
harmonic approach, because such circuits satisfy the super-
position principle. Such an approach may lead to substantial 
errors, however, when applied to systems that contain devices 
with a nonlinear voltage-current relationship. The same applies 
to analysis of power phenomena, since powers are products of 
voltages and currents. Products of the voltage and current 
individual harmonics may have no physical sense. 

A single harmonic is specified in terms of three numbers: 
(1) the ratio of the frequency of the harmonic to the fundamen-
tal frequency, referred to as the harmonic order, (2) the root 
mean square (rms) value or amplitude of the harmonic and (3) 
the phase with respect to a time reference, common to all 
harmonics of the same quantity. The description of a quantity 
in terms of its harmonics (their order, rms value and phase) is 
re-ferred to as the description in the frequency-domain. A 
periodic current, i, that contains the fundamental harmonic, i1, 
of the rms value 100 A and the seventh order harmonic, i7, of 
the rms value of 15 A is shown in Fig. 1.  

Harmonics in symmetrical three-phase circuits have a 
speci-fied sequence. Terminals of three-phase devices are 
ordered and tags−for example, R, S and T−are attributed to 
each of them. A three-phase quantity is of a positive sequence, 
if a particular phase of this quantity (e.g., a zero-crossing or 

maximum) is observed sequentially at the terminal R, next at S 
and after that at T. Harmonics of order higher by one than any 
multiplicity of three are of positive sequence. However, when 
the order of a harmonic is lower by one than any multiplicity of 
three, then a particular phase, after it is observed at terminal R, 
is not observed at terminal S but at terminal T. Harmonics of 
such orders are referred to as negative sequence harmonics. 
The same phase is observed simultaneously at terminals R, S 
and T, however, for harmonics of the order equal to any multi-
plicity of three. These are zero sequence harmonics. Voltage 
harmonics of negative sequences when applied to a three-phase 
winding of a motor create magnetic fields rotating in the oppo-
site direction to that created by harmonics of the positive se-
quence. Harmonics of the zero sequence do not create a rotat-
ing field in such a winding at all.  

i
i

i

i

1

7

T
t0

A

100

15

 
Figure 1. Plot of a periodic current, i, which contains the fundamental 
harmonic, i1, of rms value of 100 A and the 7th-order harmonic, i7, of 
rms value of 15 A. 

Harmonics may cause various harmful effects in electrical 
systems, both on the customers’ and on the utilities’ side. 
When customers are adversely affected by voltage harmonics, 
one refers it to deterioration of the supply quality. When 
utilities are affected by load-originated current harmonics, the 
loading quality is degraded by harmonics. Therefore, 
harmonic-related problems in electrical systems have been the 
subject of exten-sive studies. Several books (1-4) and several 
thousand articles on harmonics in power systems have been 
published. IEEE Transactions on Power Delivery, on Industry 
Applications, on Power Electronics and on Instrumentation 
and Measurements are the main American journals where 
publications on harmo-nics can be found. Electrical Power 
Quality and Utilitation Journal, Archiv fur Elektrotechnik, 
Proceedings IEE, and European Transactions on Electrical 
Power, ETEP, are impor-tant European sources of publications 
on harmonics and power phenomena. There is also a biannual 
International Conference on Harmonics and Power Quality in 
Power Systems, organized by the IEEE Power Society and the 
International Workshop on Power Definitions and 
Measurements in Nonsinusoidal Sys-tems, organized by the 
Italian Chapter of IEEE Instrumentation and Measurement 
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Society. Moreover, a lot of information can be found in IEEE 
Standards (5-7) and CIGRE Reports (8).  

Harmonic-related issues can by subdivided into several 
categories. For readers interested in particular subject, a few 
references are provided below along with their classification.  
1. Generation of harmonics by electrical and, in particular, by 

power electronics equipment and their propagation (6,8-12) 
2. Equipment and power system modeling (13-17) to enable 

the determination of the level of harmonic distortion  
3. Harmful effects of harmonics on the power system and 

customer equipment (18-23)  
4. Measurement of harmonic content (24-26) and system para-

meters for harmonic frequencies (27) 
5. Recommended limits of harmonics (6, 8) 
6. Harmonics related power phenomena, power definitions and 

compensation, referred to as a power theory of systems with 
nonsinusoidal voltages and currents (28-51, 90-92)  

7. Tariffs for electric energy (52, 53) 
8. Reduction of harmonics and compensation with reactive 

compensators and in particular, harmonic filters (42, 52-53)  
9. Reduction of harmonics and compensation with switching 

compensators (57-62, 85, 86, 94, 95)  
10. Development of power electronic equipment with reduced  

current harmonics (63-65)  
There are three major applications of the description of 

electrical quantities in terms of harmonics. (1) circuit analysis, 
(2) characterization of waveform distortion, (3) analysis of 
power phenomena; fundamentals of the power factor impro-
vement and reduction of waveform distortion.  

The first application is confined to linear circuits, that is, 
circuits that fulfill the superposition principle. Such a circuit at 
nonsinusoidal voltages and currents can be analyzed harmonic 
by harmonic as a circuit with sinusoidal voltages and currents. 
However, that is not possible in nonlinear circuits. 

The second application is related to the supply quality in 
distribution systems, since the presence of the voltage harmo-
nics means degradation of the quality of the supply. Also, 
generation of current harmonics by the load means degradation 
of the loading quality of customers' loads.  

The third application of harmonics provides fundamentals 
for power theory of electrical systems with nonsinusoidal 
volta-ges and currents, meaning explanation of physical 
phenomena that accompany energy delivery. It contributes to 
developing definition of power quantities and description of 
energy flow in power terms. Power theory also provides 
fundamentals for methods of improving the effectiveness of 
energy delivery and reduction of waveform distortion. 
Harmonic filters and swit-ching compensators are used for that.  

Distribution of windings in individual slots of the power 
plant generators is the primary cause of the voltage distortion 
in electrical power system. Therefore, generators are built to 
provide a voltage that is as close as possible to a sinusoidal 
voltage, and for synchronous generator the voltage harmonics 

are usually below 1% of the fundamental and are negligible. 
The energy to ac power systems is provided also from dc 
systems and from variable frequency generators, such as–for 
example−wind generators, through power electronics 
convertes. Unfortunately, such converters do not provide 
sinusoidal vol-tage. Voltage distortion occurs also as a result of 
the current distortion. It is because a distorted current causes 
distorted voltage drop on the power system impedances.  

Current harmonics occur in electrical circuits due to three 
reasons: (1) nonsinusoidal supply voltage, (2) nonlinearity of 
electric equipment and (3) periodic time-variance of electrical 
parameters, usually caused by fast periodic switching.  

The first reason, nonsinusoidal supply voltage, is the only 
cause of the current distortion in linear, time-invariant circuits. 
When harmonics occur in such a circuit, they can be moreover 
amplified by a resonance. Capacitors installed in distribution 
systems for improving the power factor or/and the capacitance 
of cable grids may resonate with the inductance of power 
system transformers. Even distributed capacitance and induc-
tance of an overhead distribution line or a cable may contribute 
to amplification of the current and voltage harmonic when the 
length of such a line is comparable with the quarter-wave 
length of the electromagnetic wave of such a harmonic.  

Nonlinearity of the voltage-current relationship of electrical 
devices and/or periodic switching are the main causes of 
current harmonics in electrical systems. Some devices such as 
transformers, are essentially linear devices. They generate 
current harmonics only due to saturation of the magnetic core, 
which can happen when its size is excessively reduced in order 
to reduce its cost. Nonlinearity is necessary, however, for the 
operation of some devices. Rectifiers are such devices; that use 
the nonlinearity of diodes for conversion of an alternating 
current (ac) into a direct current (dc). Periodic switching of 
thyristors makes energy flow control by ac-dc converters 
possible. Such devices cannot operate without generating 
current harmonics. They generate current harmonics, referred 
to as characteristic harmonics, which have an order that is 
specific for a particular type of equipment. Rectifiers and 
controlled ac-dc converters are power electronics devices, and 
development of power electronics is one of the main causes of 
an increase of harmonic distortion in electric distribution 
systems. Characteristic harmonics for three-phase rectifiers and 
ac-dc converters are of the order equal to a multiple of six plus 
and minus one: the 5th, 7th, 11th, 13th and so on.  

Nonlinearity can also be not a necessary, but an intrinsic 
property of some devices−for example, fluorescent lamps or 
devices, such as arc furnaces, that use electric arcs. Generation 
of current harmonics cannot be avoided in such devices. 
Nonetheless, there are usually some possibilities for reducing 
current harmonics generated by nonlinear or switched devices 
by a proper choice of their structure. Loads that cause current 
distortion are generally referred to as harmonic generating 
loads (HGLs). Magnetic or electronic ballasts for fluorescent 
bulbs, and rectifiers in computers and video equipment, are the 
most common examples of low-power but numerous HGLs. 
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Rectifiers or ac-dc converters used for adjustable speed drive 
supplies are the most common industrial HGLs. 

Current harmonics which occur due to HGLs propagate 
throughout the whole system, causing voltage distortion. Fre-
quency properties and the system structure affect propagation 
of harmonics and waveform distortion. Frequency properties 
depend on the distribution of inductances in the system, mainly 
of transformers and overhead lines, and the distribution of 
capacitances, mainly of capacitor banks and cable grids. Due to 
resonances, harmonics can be attenuated or amplified. Also, 
harmonic filters installed in the system for suppressing harmo-
nics complicate the frequency properties of the system substan-
tially and may cause unexpected resonances and harmonic 
amplification. 

The structure of the system, in particular the type of trans-
formers, affects the propagation of harmonics substantially. 
Harmonics of the positive and negative sequences are essen-
tially not affected by the structure of transformers, but harmo-
nics of the zero sequence cannot go through transformers with 
windings that are connected in a delta configuration. In con-
trast, single-phase systems are coupled for harmonics of the 
zero sequence through the impedance of the neutral conductor.  

The waveform distortion and harmonic contents caused by 
harmonic-generating loads can be calculated analytically only 
in very simple circuits. Moreover, such an analysis usually 
requires substantial simplifications of a circuit's properties. 
Therefore, computer modeling is the main tool for analysis of 
circuits with HGLs. Dedicated programs optimized for particu-
lar purposes or commercially available software can be used 
for modeling. In particular, software such as the 
Electromagnetic Transients Program (EMTP), HARMFLOW, 
or PSpice can be used for that purpose. Programs that model 
nonlinear devices describe the circuit in terms of nonlinear 
differential equations and integrate them numerically. Voltage 
and current waveforms are usually the outputs of such 
programs. They provide the waveforms in the transient state of 
the circuit, when they are usually nonperiodic, and in the 
steady state, when the transient components disappear. In the 
steady state waveforms are perio-dic and can be described in 
terms of harmonics.  

A Discrete Fourier Transform (DFT) is the main mathema-
tical tool for calculating the rms values and phases of the vol-
tage and current harmonics when the values of the voltage and 
current at discrete instants of time, referred to as samples, are 
known. The amount of calculations needed by the DFT can be 
substantially reduced by using the Fast Fourier Transform 
(FFT) algorithm. The number of samples per waveform cycle 
for the DFT has to be more than twice as large as the order of 
the harmonic of the highest frequency. If this condition, known 
as the Nyquist criterion, is not fulfilled, harmonics are calcu-
lated with an error caused by the spectrum-aliasing phenome-
non. This applies both when the samples are calculated by a 
circuit modeling program and when they are measured in a 
physical systems.  

There are two approaches to measuring harmonics. Before 
the digital signal processing (DSP) technology was developed, 
analog filters were used for measurement of harmonic content. 
Such filters, tuned to frequencies of particular harmonics, were  
capable of measuring only their rms value. It was not possible 
to measure the harmonic phase; therefore, such measurements 
were useful only in situations where the harmonic phase was 
irrelevant. Digital meters of harmonics, known also as harmo-
nic analyzers, are built of a signal-conditioning circuit, which 
normalizes the signal magnitude to a level that can be handled 
by digital devices; a sample-and-hold circuit, which takes 
analog samples of a continuous analyzed quantity; an analog-
to-digital converter, which converts the analog samples to a 
digital form; a digital data storage device; and a digital signal-
processing unit, which performs the FFT algorithm 
calculations needed for the DFT. Such meters provide both the 
rms value and the phase of harmonics for a single quantity or 
for several different quantities. Simultaneous sampling of all 
quantities may in fact be needed in such a case. Such a meter 
may be built as a separate dedicated device. A personal 
computer equipped with an additional board for digital data 
acquisition and DSP software may serve as a harmonic 
analyzer as well. 

Harmful effects caused by harmonic distortion in 
customers' and power utilities' equipment are the main reason 
for the concern with harmonics. These effects differ 
substantially in their predictability. An increase in the current 
rms value, an increase in the loss of active power or a reduction 
of the mechanical torque of three-phase motors due to 
harmonics is easy to predict. Temperature increase and 
reduction of the lifetime expectation of motors and 
transformers due to an additional heat release are much more 
difficult to anticipate. The least predictable are disturbances of 
harmonic-sensitive devices, such as digital equipment and 
measuring, control and communication systems. They can be 
disturbed by harmonics on the supply lines (mainly on the 
neutral conductor, since this conductor is a collector of the 
zero-sequence current harmo-nics), as well as by capacitive 
and inductive coupling with other sources of the voltage and/or 
current harmonics. A current disturbing a device through 
capacitive coupling with a distorted voltage is proportional to 
the derivative of this voltage, and this derivative increases with 
the harmonic order. The same is true of a voltage induced in 
such a device by inductive coupling with a distorted current. 
This voltage is proportional to the derivative of the current, 
thus it also increases with the harmonic order. Apart from 
direct harmful effects, harmonics also make power factor 
improvement with capacitor banks less effective, since 
harmonic resonances and amplification of some harmonics may 
occur. More complex compensating devices are needed in the 
presence of harmonics. Consequently, the direct harmful 
effects of harmonics as well as the cost of various preventive 
methods make energy distribution and utilization in the 
presence of harmonics more expensive. The supply may also 
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be less reliable because the failure rate of the distribution 
equipment increases with harmonic distortion.  

Guidance with respect to the acceptable level of harmonics 
is provided by standards. IEEE Standard 519 (6) is a recom-
mended standard for the US power system. It specifies the 
level of voltage harmonics for various voltage levels. This 
acceptable level declines as the voltage level increases. Also, it 
specifies the value of the current harmonics that can be injected 
into a system by HGLs. This level depends on the short-circuit 
power, meaning the system impedance at the HGL terminals. 
The lower the short-circuit power is (i.e., the higher the impe-
dance), the lower the acceptable value of injected current 
harmonics is. These acceptable levels of harmonics are based 
on a consensus regarding a balance between the cost of 
harmful effects of harmonics and the cost of their reduction. 
However, this consensus applies to common situations. For 
specific situ-ations these recommended limits can be too liberal 
or too stringent. 

When voltage distortion is unacceptably high, voltage har-
monics can be reduced by reduction of the current harmonics 
injected by HGLs or by an increase in the short-circuit power 
at the bus where HGLs are installed−that is, by reducing the 
sys-tem impedance. There have been various attempts to 
develop power electronic equipment, mainly ac-dc converters, 
so that they generate as low current harmonics as possible. The 
injected current harmonics can also be reduced by additional 
equipment. Harmonic filters (HFs) or switching compensators 
(SCs) connected in parallel with the load, can be used for that 
purpose. HFs provide a low-impedance path for the dominating 
current harmonics generated by the load, so that they do not 
flow to the supply source. They consist of a few resonant LC 
and high-pass RLC branches connected in parallel with the 
load. Switching compensators, consisting of fast switches and 
an inductor or a capacitor for energy storage, can produce a 
current of the opposite sign to the load-generated current har-
monics. Thus, these current harmonics concel. Such compen-
sators are commonly known under the name of active power 
filters. However, they are neither active devices nor filters. 
Both HFs and SCs are also usually utilized for compensating 
the reactive power of the fundamental harmonic, meaning for 
the power factor improvement. 

POWER THEORY OF SYSTEMS WITH NONSINUSOIDAL 
VOLTAGES AND CURRENTS 

Of all harmonic related issues, the power phenomena at 
nonsinusoidal voltages and currents are the most controversial 
and confusing. Electric energy is very often conveyed at non-
sinusoidal voltages and currents; consequently, a comprehen-
sion of power phenomena in such situations is both a scientific 
and a practical imperative. Therefore, they will be discussed in 
much more detail than other issues in this article. Comprehen-
sion of power phenomena may contribute to progress in meth-
ods of compensation and power factor improvement, to an 
improvement of tariffs for energy in the presence of harmonics, 

and to methods of improvement of the supply and loading 
qual-ity in distribution systems.  

A set of power-related definitions, equations and interpret-
tations of the power phenomena that remain valid irrespective 
of distortion level is referred to as a power theory. The reasons 
for the difference between the active power (the average value 
of energy delivered to the load over a period) and the apparent 
power (the product of the supply source voltage and current 
rms values) is a prime concern of power theory. 

P.C. Stainmetz was the first to observe, in 1892 (48), that 
the power factor that is, the ratio of the active to the apparent 
powers, declines due to the waveform distortion caused by an 
electric arc, without any phase shift between the voltage and 
the current. This means that devices that cause waveform 
distortion cannot be described in terms of powers defined for 
systems with sinusoidal waveforms. After more than a century, 
the ques-tion on how the powers should be defined in the 
presence of waveform distortion still remains controversial.  

There are two main approaches to defining powers and 
formulating power equations, namely, with and without the use 
of harmonics. The approach based on decomposition of the 
voltage and current into harmonics is referred to as a 
frequency-domain approach. The most disseminated 
frequency-domain power theory was developed by C.I. 
Budeanu (49) in 1927. The power definitions based on this 
theory are in the present IEEE Standard Dictionary of 
Electrical and Electronics Terms (5). Unfortunately, as was 
proven in Ref. (33) in 1987, this theory misinterprets power 
phenomena. The reactive power Q defined by Budeanu is not a 
measure of the apparent power increase due to energy 
oscillation as it is in the case of circuits with sinu-soidal 
waveforms. Also, the distortion power D defined by Budeanu 
is not a measure of the apparent power increase due to the 
waveform distortion. Attempts at formulating power theory 
without harmonic decomposition, (i.e., in the time-domain), 
were initiated by Fryze in 1931 (50). This approach requires 
much more simple instrumentation and provides algorithms for 
compensator control (30, 31, 59); however, it does not provide 
a physical interpretation of power phenomena.  

Currently, the most advanced power theory is based on the 
concept of Currents’ Physical Components (CPC), developed 
by Czarnecki (32, 34-36, 67, 69, 72). It provides physical inter-
pretation of power phenomena in single-phase and unbalanced 
three-phase, three-wire systems under nonsinusoidal 
conditions, with linear, time-invariant loads and with harmonic 
generating loads (HGLs). It also provides fundamentals for 
reactive power compensation (32, 36) and the load balancing 
(42, 82-84) in such systems with reactive compensators and 
fundamentals for control of switching compensators (62, 84, 
85, 94). The CPC- based algoritms can supersed algoritms 
based on the Instantane-ous Reactive Power (IRP) p-q Theory, 
developed in 1984 by Nabae, Akagi and Kanazawa (59). This 
theory misinterprets (80-81) power phenomena in systems with 
unbalanced loads. 

FOURIER SERIES 



The fundamentals of Fourier series and of the harmonic 
concept are presented in detail in Ref. (66). Some elements of 
this con-cept that are relevant to electrical circuits and the 
symbols used are explained below.  
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Electrical quantities such as voltages u(t), currents i(t) or 
fluxes φ(t), denoted generally by x(t) or y(t), are periodic if for 
any instant of time t they satisfy the relation 

x(t) = x(t ±  nT)                                    (1) 
where n is any integer and T, called a period, is a non zero real 
number. An example of a periodic quantity, x(t), is shown in 
Fig. 2. Mathematically, the period T is the smallest number that 
satisfies Eq. (1). This condition is often neglected in electrical 
engineering. In particular, the period T of a power system 
voltage is usually considered to be the period of other periodic 
quantities in such a system, even if Eq. (1) is satisfied also for a 
shorter time. For example, the output voltage of a six pulse ac-
dc converter satisfies Eq. (1) also for T/6, but it is usually con-
sidered as a periodic quantity with the period T not T/6. 

 
Figure 2. Periodic quantity x(t) of the period T. 

Periodic quantities in electrical systems are of a finite po-
wer, this means they are integrable with square, i.e., 
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linear space, denoted by LT
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referred to as the root mean square (rms) value in electrical 
engineering. The distance 
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only if (x,y) = 0 

The quantities that have a zero scalar product are said to be 
mutually orthogonal. Thus, Eq. (6) holds true only for ortho-
gonal quantities. In particular, quantities x(t), y(t) ∈ LT

2  that 
have one of the following properties 

x(t) y(t) = 0,   for each  t                         (7) 
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are mutually orthogonal.  
If x(t) ∈ L  then it has the Fourier series T
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At each point t, where quantity x(t) is continuous, f(t) = x(t). If 
the quantity x(t) has a discontinuity at a point t = t1, then at 
such a point  
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that is, the Fourier series f(t) converges to the mean value of 
the discontinuity of x(t), or to the half of its left-side and right-
side limits. Remembering this, it is a common custom to write 
the Fourier series neglecting the difference between x(t) and 
f(t)  
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The term  
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is referred to as the harmonic of the order n of quantity x(t). 
The parameter Xn is equal to 
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and denotes the rms value of the harmonic, while the parameter 
αn, equal to  
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is its phase. With the use of harmonics, the Fourier series of 
x(t) can be written as 
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When a quantity x(t) has a limited number of harmonics of the 
order n from a set N, i.e., 
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such a sum is called a trigonometric polynomial of x(t). Perio-
dic quantities in electrical engineering are usually approxima-
ted by trigonometric polynomials, and therefore, by a limited 
number of harmonics. 

The Fourier series in the expression (15), referred to as a 
classical form, is badly suited for linear circuits analysis, since 
the circuit analyzed has to be described in terms of a set of 
differential equations and integrated numerically. The complex 
form of the Fourier series is more convenient for that purpose, 
namely 
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referred to as a complex rms (crms) value of the nth-order 
harmonic. The set of the crms Xn values of all harmonics of the 
quantity x(t) is called a harmonic spectrum of x(t). The set of 
all rms Xn values is called a harmonic rms spectrum. 

The rms value, the distance and the scalar product of perio-
dic quantities defined by (3), (4) and (5) in the time-domain, 
can be calculated with the crms values of harmonics, that is, in 
the frequency-domain. They are equal to  
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The asterisk in the last formula denotes the complex conjugate 
number. Observe, that while these functionals were calculated, 
the integration in the time-domain was superseded with alge-
braic operations on the crms values, that means in a frequency-
domain. 

PROPERTIES OF HARMONICS’ CRMS VAUES 

The crms values Xn of harmonics have some properties that 
facilitate their calculation. The most useful properties are com-
piled below.  

1. The CRMS Values of Harmonics of a Linear Form. If 
quantities x(t) and y(t) ∈  and their harmonics have the 
crms values Xn and Yn, then harmonics of their linear form 
equal to z(t) = α x(t) + β y(t) have the crms value 

LT
2

Zn = α Xn + β Yn                            (26) 

2. The CRMS Values of Harmonics of a Shifted Quantity. If 
harmonics of the quantity x(t) have the crms values Xn, then 
harmonics of the quantity y(t) shifted as shown in Fig. 3, 
with respect to x(t) by time τ, i.e., y(t) = x(t - τ) have the 

crms value 
1jn

n eY ω τ−= nX                                   (27) 

 
Figure 3. Quantities x(t) and y(t) shifted mutualy by time τ, 

3. The CRMS Values of Harmonics of a Reflected Quantity. If 
harmonics of the quantity x(t) have the crms values Xn, 
then harmonics of the quantity y(t) reflected with respect to 
x(t), as shown in Fig. 4, i.e., y(t) = x(− t) have the crms 
value 

*
nY X= n                                       (28) 

 
Figure 4. Quantity x(t) and reflected quantity y(t) = x(−t). 

4. The CRMS Values of Harmonics of an Even Quantity. If the 
quantity x(t) is symmetrical with respect to the time refe-
rence point, t = 0, meaning x(t) = x(−t), then for each har-
monic 

Im{Xn} = 0                                  (29) 

5. The CRMS Values of Harmonics of an Odd quantity. If the 
quantity x(t) is asymmetrical with respect to the time 
reference point, t = 0, meaning x(t) = −x(−t), then for each 
harmonic 



Re{Xn} = 0                                 (30) 

6. The CRMS Values of Harmonics of a Quantity Odd with 
Respect to the Values Shifted by Half the Period. If the 
quantity x(t) is asymmetrical with respect to the values shif-
ted by half of the period, as shown in Fig. 5, [i.e., x(t−T/2) 
= − x(t)], then 

X2k = 0                                    (31) 

 

Figure 5. Quantity which is odd with respect to the values shifted 
by the half of the period. 

which means the quantity can have harmonics only of 
an odd order. 

7. The CRMS Values of Harmonics of the Derivative a 
Quantity. If the harmonics of the quantity x(t) have the 
crms value Xn and the derivative y(t) =  ( )dx t / dt ∈  

2
TL , then harmonics of the quantity y(t) have the crms 

values 

1n jnY

7 

nXω=                              (32) 

8. The CRMS Values of Harmonics of the Integral a Quan-
tity. If the harmonics of the quantity x(t) have the crms 
value Xn and the integral y(t) = ( )x t dt∫  ∈  LT

2 , then ha-

monics of the quantity y(t) have the crms values 

1

1
n jn

Y
ω

= nX                           (33) 

The rms value of the zero-order harmonic, X0, can have 
any real value.   

Application of these properties for calculating harmonics' 
crms values is illustrated with the following example. 

Example of Application. Figure 6a shows a trapezoidal appro-
ximation of the supply current i(t) of a six-pulse ac-dc 
converter with inductive filtering of the output current. The 
commutation angle of the converter μ = ω1τ =  100. Let us find 
the formula for the calculation of the crms values of the current 
harmonics for I = 100 A.  
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Figure 6. (a) Trapezoidal approximation of the supply current i(t) of a 
three-phase ac-dc converter with an inductive filter; (b) its positive 
component x(t); (c) shifted positive component y(t); (d) its derivative 
z(t) and (e) shifted positive component w(t) of derivative z(t). 

The current can be considered as a linear form of two 
components x(t) and x(t−T/2), where x(t) is shown in Fig. 6(b), 
thus i(t) = x(t) − x(t−T/2), hence 

1 2(1 ) (1 )
0 for  2

                                
2 , for  2 1

Tjn jn
n n

n

e e
, n k

n k

I X X

X

ω π− −= − = − =

=⎧
= ⎨

n

= +⎩

 

Since it is easier to calculate the crms values for symmetrical 
quantities than for quantities without any symmetries, we can 
treat quantity x(t) as the quantity y(t) shown in Fig. 6(c), shifted 
by a = (T/3+τ)/2, that means, x(t) = y(t− a), hence 

1
( )3 2jnjn a

n ne e nX Y Y
π μ

ω − +−= =  

The quantity y(t) is an integral of the rectangular pulses z(t), 
shown in Fig. 6(d), namely   

( ) ( )Iy t z t dt
τ

= ∫  

hence 

1

1
n n

I I
jn jn

Y Z
τ ω μ

= = nZ  

The quantity z(t) is a linear form of the pulse w(t) shown in 
Fig. 6(e), shifted by ± b, where b = a − τ/2 = T/6, namely,  

z(t) = w(t+ b) − w(t− b) 

Thus 

1 1( ) 2 sin(
3

jn b jn b
n ne e j nZ Wω ω π−= − = ) nW  



where the crms values of harmonics of the pulses w(t) are equal 
to 

1 1

/2 /2

/2 /2

2 2 2( ) sin( )
2

T
jn t jn t

n
T

w t e dt e dt n
T T n

W
τ

ω ω

τ

μ
π

− −

− −

= = =∫ ∫  

Finaly, the supply current harmonics have the crms values  

( )3 22 sin( 3) sin( 2)2
3 3 2

jn
n

n / n / I e
n / n /

I
π μπ π

π π
− +

=  

For I = 100 A and commutation angle μ = 100, the crms values 
of the current harmonics up to the 17th-order are equal to 

065
1 77.87 AjeI −= ,     

0145
5 15.10 AjeI −=

095
7 10.45 AjeI −=

0175
11 6.05 AjeI −= ,  ,   

0125
13 4.79 AjeI −=

0155
17 3.08 AjeI =

The sum of these six harmonics is shown in Fig. 7. 

I

i(t)

T/2 T
t0

T/4

 
Figure 7. Sum of six harmonics of the trapezoidal approximation of 
the supply current of a three-phase ac-dc converter.  

HARMONICS IN LINEAR CIRCUITS WITH LUMPED 
RLC PARAMETERS 

Linear circuits with lumped RLC parameters are described 
in terms of Kirchoff's voltage and current laws and the voltage-
current relations for the circuit RLC parameters.  

1. Kirchoff's current law (KCL) for a node of K branches,  

1
( ) 0

K

k
k

i t
=

=∑                              (34) 

is a linear form of the branch currents,  

1
0

1
( ) 2 Re jn t

k k kn
n

i t I eI ω
∞

=
= + ∑                 (35) 

Due to linearity of crms values, the KCL is satisfied for a node 
if for each harmonic 

1
0

K

kn
k

I
=

=∑                              (36) 

2. Kirchoff's voltage law (KVL) for a closed path with M 
voltages,  

1
( ) 0

M

m
m

u t
=

=∑                            (37) 

is a linear form of voltages,  

1
0

1
( ) 2 Re jn t

m m mn
n

u t U eU ω
∞

=
= + ∑              (38) 

KVL is satisfied for the closed path if for each harmonic 

1
0

M

mn
m

U
=

=∑                              (39) 

3. The voltage-current relations can be written in one of the 
following forms: 

1
0 0

1
( ) 2 Re e jn t

n n
n

i t Y U Y U ω
∞

=
= + ∑                  (40) 

or 

1
0 0

1
( ) 2 Re e jn t

n n
n

u t Z I Z I ω
∞

=
= + ∑                  (41) 

with  
1nj

n n n n
n

Z e R jXZ Y
ϕ= = + =                      (42) 

referred to as an impedance for the n th-order harmonic. The 
symbol 

nj
n n n nY e G jBY ϕ−= = +                            (43) 

denotes an admittance for that harmonic. The impedance Zn 
for a series RLC branch, shown in Fig. 8(a), is equal to   

1
1

1
n R jn L jn CZ ω ω= + +                         (44) 

              

Figure 8. (a) Series RLC branch and (b) parallel RLC branch. 

For a parallel RLC branch, shown in Fig. 8(b), the impedance 
Zn is calculated as 

1
1

1
1n

G jn C jn L

Z
ω ω

=
+ +

, with G = 1
R                (45) 

These voltage-current relations along with Kirchoff's laws pro-
vide fundamentals for all methods of steady-state analysis of 
linear circuits in the presence of voltage and current harmonics. 
The harmonic approach enables us to describe linear circuits in 
terms of a set of algebraic equations with complex coefficients, 
separately for each harmonic. 
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HARMONICS OF SYMMETRICAL THREE-PHASE 

9 

QUANTITIES 

When ac electric energy is conveyed to large customers, three-
phase, three-wire systems are usually used. The lines and 
termi-nals of three-phase devices have to be ordered and 
tagged, for example as terminals R, S, and T, as shown in Fig. 
9. Three-phase systems are built to achieve the symmetry of 
voltages and currents, as far as possible.  

 
Figure 9. Three-phase, three-wire system, its terminals, line currents 
and line-to-ground voltages. 

The voltage provided to a customer is of the positive sequence.  
This means that a particular phase of the voltage−for example, 
a maximum or a zero crossing, after−it is observed at terminal 
R, is observed after one third cycle at terminal S, and next, 
after another one third cycle, at terminal T. Thus, a 
symmetrical and positive sequence three-phase quantity, for 
example a voltage, satisfies the relationship 

S R T R R( ) ( ),      ( ) ( 2 ) ( )3 3
T Tu t u t u t u t = u t= − = − + 3

T       (46) 

Such a symmetrical, positive sequence three-phase voltage is 
shown in Fig. 10.  

u

t
TT/3 2T/3

u u
u

R S T

0

 
Figure 10. Example of three-phase nonsinusoidal symmetrical volta-
ges of the positive sequence composed of harmonics of the second, 
third, and fourth order.  

When the voltage at terminal R contains the nth-order harmo-
nic, namely 

R R 1( ) 2 cos( )n nu t U n tω α= R n−                    (47) 

then this harmonic at terminal S and T are equal to 

S R 1

R 1 R

( ) 2 cos[ ( ) ]3
2           2 cos( )3

n n

n n

Tu t U n t

U n t n

ω αR n

πω α

= − − =

= − −
             (48) 

T R 1

R 1 R

( ) 2 cos[ ( ) ]3
2            2 cos( )3

n n

n n

Tu t U n t

U n t n

ω αR n

πω α

= + − =

= − +
             (49) 

When a voltage harmonic is of the order n = 3k, then 3k x 2π/3 
= k x 2π. Harmonics of such an order when observed at termi-
nals R, S and T are in phase, i.e.,  

uRn(t) = uSn(t) = uTn(t)                         (50) 

Such harmonics are referred to as the zero sequence 
harmonics. They are not able to propagate in three-wire 
systems. Such sys-tems behave as open circuits for zero 
sequence harmonics. 

When a voltage harmonic is of the order n = 3k+1, then 
(3k+1) x 2π/3 = k x 2π + 2π/3. This means that the same phase 
of such a harmonic is observed in the same sequence as the 
three-phase quantity, namely 

uSn(t) = uRn(t−T/3n),     uTn(t) = uRn(t+T/3n)         (51) 

Such harmonics are referred to as the positive sequence 
harmonics. 

When a voltage harmonic is of the order of n = 3k − 1, then 
(3k−1) x 2π/3 = k x 2π − 2π/3. It means that the same phase of 
such a harmonic is observed in the opposite sequence than the 
sequence of the three-phase quantity, namely 

uSn(t) = uRn(t+T/3n),     uTn(t) = uRn(t-T/3n)          (52) 
Such harmonics are referred to as negative sequence harmo-
nics. There is no difference in the propagation of the positive 
and the negative sequence harmonics. However, they create 
magnetic fields rotating in opposite directions in electric 
motors. An example of voltage harmonics of the second, third 
and fourth order, that is, the negative, zero and positive sequ-
ence, are shown in Fig. 11. Just these harmonics, with ampli-
tude 25 % of the fundamental, result in the voltage distortion 
shown in Fig. 10.  



        

Figure 11. Harmonics of the voltages shown in Fig. 10; (a) the fun-
damental harmonic; (b) the second-order harmonic which is of the 
negative sequence; (c) the third-order harmonic which is of the zero 
sequence; and (d) the fourth-order harmonic which is of the positive 
sequence. 

INSTANTENEOUS POWER IN SINGLE-PHASE CIRCUITS 

The instantaneous power p(t) at a cross-section of a circuit 
where the voltage u(t) and the current i(t) are observed is 
defined as the rate of electric energy W(t) flow from the supply 
source to the load, namely 

( ) ( ) ( ) ( )dp t W t u t i tdt= =                         (53) 

As the rate of energy flow, the instantaneous power has a clear 
physical interpretation. When this rate is negative, energy 
flows back from the load to the supply source. The 
instantaneous power of a passive resistive load, p(t) = R [i(t)]2, 
is non-negative and it is commonly assumed that, in spite of 
fluctuation of the instantaneous power, there is no energy 
oscillation between the supply source and resistive loads. A 
phase-shift between the voltage and current could be a cause of 
energy oscillation. The change of energy stored in electric or 
magnetic fields of inductors and/or capacitors is the only cause 
of such a phase shift in linear, time-invariant circuits. When a 
circuit is time-variant (in particular, with periodic switching), 
then a phase shift between voltage and current harmonics may 
occur even without energy storage capability. A light dimmer, 
where a semiconductor device known as a triac is used as a 
periodic switch to control the rms value of the current of an 
incandesent bulb, is a common example of such a circuit. The 
fundamental harmonic of the supply current is shifted with 
respect to the supply voltage in such a circuit without energy 
storage. In spite of this phase shift and the presence of reactive 
power, there is no reciprocating energy oscillation between the 
supply and the load, since the instantaneous power p(t) is non-
negative in such a circuit. 
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When a circuit has, including all sources and loads, K 
components with voltages uk(t) and currents ik(t) then  

1 1
( ) ( ) = ( ) = 0

K K

k k k
k k

u t i t p t
= =

∑ ∑                    (54) 

This is a conclusion from Tellegan's law and is referred to as 
the balance principle for the instantaneous power. This means 
that instantaneous power of all sources and loads is balanced at 
each instant of time. 

The formula in Eq. (53) for the instantaneous power, when 
the voltage and current are expressed as a sum of harmonics,  

0 0
( ) ( ) ( ) ( ) ( )n n

n n
p t u t i t u t i t

∞ ∞

= =
= = ∑ ∑                (55) 

can be a source of a substantial misconception. This is because 
the product of two Fourier series contains an infinite number of 
oscillating components which is interpreted by some authors 
(45) as a proof that energy oscillates between the supply source 
and the load. In fact, such oscillating terms in the instantaneous 
power may exist even if there is no energy flow between the 
source and the load at all. This is illustrated (50) with the 
circuit shown in Fig. 12. 

 

Figure 12. (a) Dc source loadad with a periodic switch, (b) load 
voltage and (c) load current. The instantaneous power at the load 
terminals, calculated as the product of the voltage and current harmo-
nics, contains an infinite number of oscillating components, but there 
is no energy oscillations, since the instantaneous power is equal to 
zero. This circuit demonstrates that the apparent power may have a 
nonzero value without energy oscillations. 

The load, supplied from a dc source, consists only of a periodic 
switch. The product of the load voltage and current Fourier 
series contains an infinite number of oscillating components, 
while at the same time there is no energy flow to such a load. 
In spite of the presence of the oscillating components of the 
instantaneous power p(t), energy does not flow to the load 
when the switch is open or closed. There is only a very small 
amount of energy in the load associated with the stray 
capacitance and inductance. The product u(t) i(t) is equal to 
zero over the whole period of time, apart from instants where 
the voltage and cur-rent have discontinuities. 



ACTIVE POWER IN SINGLE-PHASE CIRCUITS 

The active power is the average value of the instantaneous 
power p(t) over a single period of the voltage, namely   

0

1( ) ( ) ( ) ( , )
T

P p t u t i t dt u iT= = =∫                   (56) 

The active power in systems with sinusoidal voltages and 
currents is a synonymous with the useful power. This may not 
be true in the presence of harmonics, since the active power 
associated with harmonics may not contribute to useful work, 
but to various harmful effects.  
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When a circuit has, including all sources and loads, K com-
ponents with voltages uk(t) and currents ik(t), then the mean 
value of the instantaneous power of all components, that means 
their active power, fulfills the relationship, 

1 1 1
( ) ( ) = ( ) = 0

K K K

k k k k
k k k

u t i t p t P
= = =

=∑ ∑ ∑               (57) 

referred to as the balance principle for the active power. 
The active power is the scalar product of the voltage and 

current, then if the crms values of the voltage and current 
harmonics are equal to nj

n nU eU α=  and nj
n nI eI β= , res-

pectively, then the active power can be expressed, according to 
Eq. (25), as 

0 0
Re cos*

n n n n n
n n

P U IU I ,ϕ
∞ ∞

= =
= =∑ ∑

I

2
n nR I

   with  ϕn = αn − βn    (58) 

Since In = YnUn = (Gn + jBn)Un, then the active power can be 
expressed as 

2

0
n n

n
P G U

∞

=
= ∑                                      (59) 

Similarly, since Un = ZnIn = (Rn + jXn)In, the active power can 
be expressed as 

2

0
n n

n
P R

∞

=
= ∑                                       (60) 

The term, which can alternatively be expressed as 
2Re{ } cos*

n n n n n n n nP U I G UU I ϕ= = = =          (61) 

is called the harmonic active power of the nth-order harmonic. 
Equation (57), which describes the balance principle for the 
active power in a circuit with harmonic orders n ∈ N, can be 
written in the form 

1 1 1
( ) ( ) = 

K K K

k kn kn
k k n N n N k

P P P
= = ∈ ∈ =

= =∑ ∑ ∑ ∑ ∑ 0               (62) 

This equation is fulfilled for any set N, only if  

1
= 0

K

kn
k

P
=

∑                                  (63) 

for all harmonic orders n. This means that the sum of harmonic 
active power of all components of an electric circuit has to be 
equal to zero for each harmonic separately. This is a balance 
principle for harmonic active power. 

APPARENT POWER IN SINGLE-PHASE CIRCUITS 

When the load has the active power specified with Eq. (56), 
then the rms value of the supply source voltage is, according to 
Eq. (23), equal to 

2

0
|| || n

n
u

∞

=
= ∑U                              (64) 

and the rms value of the source current is equal to  

2

0
|| || n

n
i

∞

=
= ∑ I                               (65) 

The supply source has to provide the voltage and current of the 
rms values ||u|| and ||i|| independently of the load active power 
P, and these two rms values affect the power ratings of the 
supply source and the active power loss inside of the source 
indepen-dently of each other. Therefore, the power rating of 
supply sources is characterized by the product of the voltage 
and current rms values ||u|| and ||i|| they are able to provide, 
referred to as an apparent power, namely 

||u|| ||i|| = S                                 (66) 

This is not a physical quantity, however, but a conventional 
one. The adjective apparent emphasizes the fictitious nature of 
this power. There is no physical phenomenon related to the 
apparent power. For example, the apparent power S in the 
circuit shown in Fig. 12 is equal to S = ||i|| ||u|| = 70.7 x 70.7 = 
5000 VA, and this power is not related to any power phenol-
menon in the load, since there is no energy flow to the load 
(the switch), and in particular, this power is not related to any 
reciprocating oscillation of energy between the load and the 
source.  

Because the apparent power is a conventional quantity, 
other conventions are also possible. Nonetheless, definition in 
Eq. (66) is commonly used in the power theory of single-phase 
electrical circuits. 

 
BUDEANU’S REACTIVE AND DISTORTION POWERS 

Apart from powers discussed above, a reactive power Q is 
defined for circuits with sinusoidal voltages and currents.  

When the load voltage has only a single harmonic of the nth 
-order, which means it has the waveform 1( ) 2 cosn nu t U n tω= , 
the current is equal to 1( ) 2 cos( )n ni t I n t nω ϕ= −

1

, and the ins-
tantaneous power p(t) can be decomposed into the two fol-
lowing components 

1( ) (1 cos2 ) sin 2n np t P n t Q n tω ω= + +               (67) 



with  
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ncosn n nP U I ϕ= ,     sinn n nQ U I nϕ=               (68) 

The second term in Eq. (67) is an oscillating component of the 
instantaneous power. Its amplitude Qn is referred to as the 
reactive power of the nth-order harmonic. It is denoted by Q in 
sinusoidal systems, where this power is a component of the 
power equation 

2 2P Q S+ = 2

∑

2

                                   (69) 

The reactive power for single-phase circuits with nonsinusoidal 
waveforms was defined by C.I. Budeanu (49) in 1927. To dis-
tinguish this definition from other definitions of the reactive 
power, it is denoted by here QB, namely 

B n
1 1

sinn n n
n n

Q U I Qϕ
∞ ∞

= =
= =∑                      (70) 

With such a definition of the reactive power, we have 
2 2

BP Q S+ ≤                                 (71) 

Therefore, Budeanu introduced a new power quantity 

2 2 2
B(D S P Q= − + )                           (72) 

and called it the distortion power. Budeanu's definitions of the 
reactive and distortion powers are supported by the IEEE 
Standard Dictionary of Electrical and Electronics Terms (5), 
and they are widely disseminated in electrical engineering. 

By an analogy to its interpretation in circuits with 
sinusoidal waveforms, the reactive power QB is interpreted as a 
measure of the increase in apparent power S due to energy 
oscillation between the source and the load. The distortion 
power D is interpreted as a measure of the increase in apparent 
power due to waveform distortion. Unfortunately, these two 
interpretations are erroneous (33). According to Eq. (70), the 
reactive power is defined by Budeanu as a sum of amplitudes 
Qn of the oscil-lating components of the instantaneous power 
with different frequencies, 2nω1. These amplitudes, according 
to Eq. (68), can be positive or negative. Therefore, oscillation 
of energy between the source and the load may exists even if 
the sum of these amplitudes is equal to zero. This is illustrated 
with the load shown in Fig. 13. The load is supplied with the 
voltage 1 1( ) 2 (100 sin 25 sin3 ) Vu t t tω ω= + . The parameters of 
the load were chosen such that the reactive power QB is equal 
to zero. 

 
Figure 13. Circuit with Budeanu's reactive power QB equal to zero 
but with energy oscillation between the source and the load. 

As shown in Figure 14, there are intervals of time when the 
instantaneous power p(t) is negative, so that energy flows back 
to the source, thus there is an oscillation of energy between the 
load and the source. The reactive power QB is no measure of 
the effect of this oscillation on the apparent power. 

 
Figure 14. The supply voltage u(t) and the instantaneous power p(t) in 
the circuit shown in Fig. 13. Change of the sign of the instantaneous 
power p(t) means that there is oscillation of energy in this circuit bet-
ween the source and the load. 

Also the distortion power D is interpreted erroneously. 
When the supply voltage has harmonics of orders from a set N, 
the formula (72) can be written in the form 

2 2 21
2 r s r s

r N s N
D U U |Y Y

∈ ∈
= −∑ ∑ |                  (73) 

This means, that distortion power D is equal to zero only if the 
load admittances for all harmonics of the order n N∈ , 

constn .Y =                                     (74) 

However, in order to meet this condition the load current must 
be distorted with respect to the load voltage. This current is not 
distorted but only shifted, i.e., i(t) = Y u(t − τ), on the condition 
that  

1jn
n Y eY ω τ−=                                   (75) 

Thus, apart from resistive loads, the condition (74) for the zero 
distortion power D and the condition (75) for the lack of wave-
form distortion are mutually exclusive. 

The situation where the distortion power D is equal to zero 
in spite of the distortion of the load current with respect to the 
supply voltage is illustrated with the load shown in Fig. 15. It 
is assumed that the supply voltage contains the fundamental 
and the third-order harmonics. The load parameters were 
chosen such that the admittance for these harmonics are 

mutually equal, namely, Y1 = Y3  = 21
j

e
π−

S , thus according to 
Eq. (73) the distortion power D is equal to zero.  

 



Figure 15. A circuit that has the same load admittance for the funda-
mental and the third-order harmonic, and consequently zero distortion 
power D in spite of current distortion. 

However, the waveform of the load current at the supply 
voltage 1 1( ) 2 (100 sin 50 sin3 ) Vu t t tω ω= + , plotted in Fig. 16, 
shows that the voltage and the current waveforms are mutually 
distorted. 

i(t)

u(t)

0 T 2T

 
Figure 16. The load voltage and current waveform in the circuit 
shown in Fig. 15. They are mutually distorted dispite of zero distor-
tion power D. 

The reactive power defined with Eq. (70) proves also to be 
useless for improvement of the power factor in the presence of 
harmonics. In systems with sinusoidal waveforms, the value of 
the reactive power Q enables the design of a compensator that 
improves the power factor to unity. Unfortunately, all attempts 
to do the same in nonsinusoidal systems using the value of 
Budeanu's reactive power QB have failed. The reasons for this 
were explained in Ref. (33). A current harmonic can be decom-
posed as follows 

1( ) 2 cos( )n n n
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i t I n tω ϕ= − 1 12 ( cos sin )n n

n n

P Qn t n tU Uω ω= +   (76) 

Hence, the rms value of the supply current can be expressed as  

2|| || || || ( ) ( )2 n
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This formula shows that at unchanged harmonic active powers 
Pn, the supply current has a minimum rms value, not when 

Bn
n N

Q Q
∈

=∑  = 0, but when 2( )n

nn N

Q
U

∈
0=∑  

This has nothing to do with Budeanu's reactive power, QB. B

CURRENT’S PHYSICAL COMPONENTS POWER THEORY 
OF LINEAR, TIME-VARIANT LOADS 

When a load, shown in Fig. 17(a), with harmonic admittances 
Yn, supplied with the voltage u(t), has the active power P, then 
a resistive load, shown in Fig. 17(b), is equivalent to that load 
with respect to the active power if its conductance is equal to  

2|| ||e
PG
u

=                                     (78)  

 
Figure 17. (a) Linear time-invariant load and (b) equivalent load with 
respect to the active power P at the same voltage u. The equivalent 
load is a resistive load, which draws the active current ia from the sup-
ply source. 

Such a load draws the current 

a e( ) ( )i t G u t=                                (79) 

referred to as the active current. It can be considered as the 
main component of the load current associated with the load 
active power. The concept of the active current was introduced 
by S. Fryze in 1931 (50). The remaining current of the load 

1
0 0a e e( ) ( ) ( ) 2 Re ( ) jn t

n n n
n 1

i t i t G G U G jB G eU ω
∞

=
− = − + + −∑    (80) 

can be decomposed into two components. The current 

1
r

1
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∞

=
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is referred to as a reactive current. Its concept was introduced 
in 1972 by W. Shepherd and P. Zakikhani (28). The second 
current 

1
s 0 e 0 e

1
( ) ( ) 2 Re ( ) jn t

n n
n

i t G G U G G eU ω
∞

=
= − + −∑           (82) 

is referred to as a scattered current. Its presence in the load 
current was revealed by L.S. Czarnecki in Ref. (32). Thus, the 
load current can be decomposed into three components 
associa-ted with three different phenomena, with permanent 
energy delivery to the load; with the phase shift between the 
voltage and current harmonics; and with the change of the load 
conduc-tance with harmonic order, namely This compnonents 
are refer-red to as current’s physical components (CPC).  

a s r( ) ( )+ ( )+ ( )i t i t i t i t=                           (83) 

The decomposition of the load current into the physical compo- 
nents, ia(t), ir(t) and is(t) forms the fundamentals of the CPC 
Power Theory (67).  

The scalar products of the CPCs, , and , 
are equal to zero, (32). Thus, they are mutually orthogonal, and 
therefore, the rms value of the load current can be expressed in 
terms of the rms values of the current’s physical components, 
namely 

a s( , )i i a r( , )i i s r( , )i i

2 2 2
a s r|| || || || || || || ||i i i i= + + 2                           (84) 



where 

a|| || || ||
Pi u=                                      (85) 
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2                  (87) 

The relation between the rms value of the current physical 
components, ia, is and ir and the rms value of the supply 
current is the same as the relation between the length of the 
sides of a rectangular box, shown in Fig. 18, and its diagonal.  

 
Figure 18. Geometrical illustration of the relationship between the 
rms values of the active, scattered and reactive currents. When the 
sides of the rectangular box are proportional to the rms values ||ia||, 
||is|| and ||ir||, the diagonal is proportional to the supply current rms 
value ||i||. 

Decomposition of the load current into physical 
components enables the development of the power equation of 
the load. Multiplying Eq. (84) by the square of the voltage rms 
value ||u||2, we obtain the power equation 

2 2 2
sS P D Q= + + 2

s

                             (88) 

where  

s || || || ||D u i=                                   (89) 

is referred to as a scattered power, and  

r|| || || ||Q u i=                                   (90) 

is a reactive power. The reactive power Q is used to be associ-
ated in common interpretations with energy oscillation between 
the supply source and the load. It was proven in (71) that this is 
a major misinterpretation of power phenomena in electrical cir-
cuits. The reactive power occurs as an effect of the phase shift 
between the load voltage and its current or their harmonics. 

The scattered current is(t) and the scattered power Ds occur 
in a circuit when the load conductance Gn changes with 
harmonic order n around a constant equivalent conductance 
Ge. This circuit phenomenon contributes to an increase in the 
rms value of the load current and the apparent power. The 
reactive current ir(t) and the reactive power Q occur when there 
is a phase shift between the voltage and current harmonics, i.e., 

when there is at least one non zero Qn value. Unlike the reac-
tive power defined by Budeanu, the reactive power Q defined 
with Eq. (90) is a measure of the apparent power increase (32, 
40) due to a phase shift between the voltage and current 
harmo-nics 

The power factor of the supply source, which is a measure 
of the supply source utilization, is the ratio of the active and 
apparent power of the source. It can be expressed in terms of 
the rms value of CPCs, ia, is, and ir: 

a
2 2 2 2 2

s a s

| ||

| || | || | ||

| iP P=S P + D +Q | i | i | i
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r

         (91) 

Both the scattered and the reactive currents contribute to degra-
dation of the power factor.  

Numerical illustration. The load shown in Fig. 19 is supplied 
with the voltage 
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of the rms value 
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Figure 19. Example of a linear, time-invariant load. 

The load admittance 
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for harmonic orders n = 0, 1, 5 has the values 

Y0 = 1 S,    Y1 = 0.5 S,    Y5 = 2.31 = (0.038+j2.31) S 
089je

Thus the load current   

1 1

0
1 1

5
0 0 1 1 5 5

589

( ) 2 Re{ e e } =

      = 20 2 Re{50 e 11 55 e e } A

j t j t

j t j tj

i t Y U

.

Y U Y Uω ω

ω ω

= + +

+ +
 

has the rms value 
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The load active power is equal to 
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thus, the load equivalent conductance is equal to 
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u
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The active current, which is the current’s physical component 
needed for the load active power, has the waveform 

1 15
a e( ) ( ) 10.36 2 Re{51.81 e 2.59 e } Aj t j ti t G u t ω ω= = + +  
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and the rms value 

a
5401|| || 52.9 A|| || 102.1

Pi u= = =  

The scattered current, that is, the current’s physical component 
caused by the load conductance variation, has the waveform 
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and the rms value 
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The reative current, that is, the current’s physical component 
caused by the phase shift between the voltage and current har-
monics as the waveform 

1 5
r

=1,5
( ) 2 Re 2 Re{ 11.5 e } Ajn t j t

n n
n

i t jB e jU ω= =∑ 1ω  

and the rms value, . One can verify that the root of 
squares of the rms value of the current’s physical components 
is equal to the rms value of the load current. Indeed,  

r|| || 11.5 Ai =

2 2 2 2 2 2
a s r|| || || || || || 52.9 10.1 11.5 55.07 A || ||i i i+ + = + + = = i  

Although the scattered and reactive currents are both 
useless power currents, they are associated with different 
power phe-nomena. Also, they are affected in a different way 
by shunt reactive compensators connected as shown in Fig. 20.  

An ideal compensator (i.e., a compensator that has no 
active power loss) does not change either the load 
conductances for 

 

Figure 20. Circuit with reactive LC compensator. When the supply 
voltage is not affected by the compensator, it only affects the reactive 
current leaving the scattered current unchanged. 

 
harmonic frequencies Gn or the equivalent conductance Ge. 
Hence, if the supply voltage is not affected by such a compen-
sator, meaning if the supply source impedance can be neglect-
ted, then it does not affect the scattered current. On the other 
hand, such a compensator affects the reactive current. When 
the compensator has susceptance Bcn, then it changes the rms 
value of the reactive component of the supply current i' to the 
value 
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n n n
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i B B
∞

=
= +∑ U                          (92) 

In particular, if the susceptance of the compensator, Bcn, 
satisfies the condition 

Bcn = − Bn                                   (93) 

for each harmonic of the supply voltage, then the reactive cur-
rent of the load is totally compensated. This improves the 
power factor λ of the supply source to the maximum value 
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|| || || ||
|| || || || || ||
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+
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The power factor can be improved to unity with a reactive 
com-pensator that compensates also the scattered current. 
However, it has to have not only a shunt but also a line branch 
(36). 

CURRENT’S PHYSICAL COMPONENTS AND POWERS 
OF SINGLE-PHASE HARMONIC GENERATING LOADS 

Current harmonics can be generated in passive loads due to a 
periodic change of their parameters, mining when the load is 
time-variant. Also, current harmonics are generated in passive 
nonlinear loads. Harmonics can also occur in circuits with 
active loads that contain sources of voltage or current harmo-
nics. Such loads, referred to as harmonic generating loads 
(HGLs), cannot be described in terms of powers defined for 
linear, time-invariant (LTI) loads. This is illustrated with the 
following circuit. 

Numerical illustration. The circuit shown in Fig. 21 is com-
posed of a voltage source of the fundamental harmonic equal to 
e(t) = 100 2 sinω1t V, with an internal resistance, and a resis-
tive load with a current source of the second-order harmonic, 
equal to j(t) = 50 2 sin 2ω1t A. Thus, the load can be consi-
dered as an active HGL. At the junction x-x, where  
the energy flow is observed, the voltage, current and their rms 
values are equal to:  

 1 1( ) 2 (80sin 40sin 2 ) Vu t t tω ω= + ,     ||u|| = 89.44 V 
 1 1( ) 2 (20sin 40sin 2 ) Ai t t tω ω= − ,      ||i|| = 44.72 A 



The apparent power S = ||u|| ||i|| = 4000 VA. There is no active 
power P in this junction, however, since 

1 2
0

1 ( ) ( ) 1600 1600 0
T

P u t i t dt P PT= = + = − =∫  

 
Figure 21. Circuit with harmonic generating load (HGL). The supply 
source provides a sinusoidal voltage of the fundamental frequency, 
while the load generates the second-order harmonic. The load active 
power P has a value of zero at nonzero apparent power S. The non- 
zero value of the apparent power S in this circuit cannot be explained 
in terms of the active, reactive and scattered powers. 

16 

The active power P is equal to zero because the active 
power P2 of the second-order harmonic is negative and equal to 
the active power of the fundamental harmonic, P1. Moreover, 
there is no reactive power Q in this junction, since the 
fundamental harmonics of the voltage and current are in phase, 
while the second-order harmonics are shifted by 1800. Also, 
there is no scattered power Ds, since the conductance of the 
load does not change with the harmonic order. Thus, the 
presence of a non-zero apparent power S cannot be explained 
in terms of any of the known powers. We are not able to write 
the power equation for the voltage and current observed at the 
cross section x-x. The presence of current harmonics origin-
nating on the right side of the cross section observed is the 
main obstacle to writing the current and power equations in the 
known form.  

When a current harmonic is observed in a cross section x-x, 
and the load is not linear and time-invariant, then there is 
insufficient information to conclude whether or not this current 
harmonic occurred because of the supply voltage harmonic or 
it was generated in the HGL. When the load is supplied from 
an ideal voltage source, then the presence of a harmonic in the 
current along with its lack in the voltage means that it is 
generated in the load. However, in real circuits, because of the 
voltage drop, the set of the current harmonic orders is identical 
with the set of the voltage harmonic orders. The sign of the 
harmonic active power Pn may indicate (35) where the domi-
nating source of harmonic active power is, in the supply source 
or in the load.  
Assume that a load (A) and its supply source (B) in the circuit 
shown in Fig. 22 are unknown and the voltage and current 
observed at the cross section x-x have harmonics from a set N.  

 
Figure 22. General structure of single-phase loads. The side A is assu-
meed to be a load, the side B is assumed to be the supply source. 

Active powers Pn can be calculated individually for each 
harmonic. When  it means this power is dissipated in the 
load. When Pn < 0 it means that it is dissipated in the supply 
source. The sign of Pn enables us to decompose the set N into 
to sub-sets, NA and NB, as well as to define the voltage, current 
and active power components as follows:  

0nP ≥

If ,  then 0nP ≥ An N∈  and 

A A A

A A                n n
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∈ ∈ ∈
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If Pn < 0 then Bn N∈  and  
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Thus, the load current, voltage and power can be expressed as 

A B A B A B,   ,  n n n
n N n N n N

i i i i u = u u u P = P P P
∈ ∈ ∈

= = + = − = −∑ ∑ ∑     (97) 

Equations (97) can be interpreted (35) as follows. The current i 
at terminals x-x in a circuit with HGLs contains a supply 
originated current iA and a load generated current iB. 
Similarly, the terminal voltage u contains a supply originated 
voltage uA and a load generated voltage uB. Moreover, the 
active power P at the cross-section observed is composed of a 
supply originated active power PA and a load generated active 
power PB.   

The currents iA and iB have no common harmonics; thus 
their scalar product (iA, iB) = 0, so that they are mutually ortho-
gonal. Hence the current rms value fulfills the relation  

2 2
A B|| || || || || ||i i i= + 2                                (98) 

For harmonic orders  the load can be considered as 
a passive load of admittance 

An N∈
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*
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n n n
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G jB
U
SY = + =                             (99) 

where Sn denotes the harmonic complex power,  
*

n n n n nP jQS U I= + =                             (100) 

and for the remaining harmonics the load can be considered as 
a current source of the current jA(t) = iB(t), connected as shown 
in Fig. 23. 



 
Figure 23. Equivalent circuit of a harmonic generating load (A). For 
harmonics of the order from the set NA the load is equivalent to a 
passive linear load of admittance YA. For harmonics of order from the 
set NB (negative Pn) the load is equivalent to the current source jA = iB  

With respect to the active power PA at voltage uA, the load 
is equivalent to a resistive load of the conductance  

A
A 2

A
e

|| ||
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u
=                                   (101) 

which draws the active current  

iaA = GeA uA                                  (102) 

The remaining part of the current iA can be decomposed into 
the scattered and reactive components 
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The formula for the scattered current was written assuming that 
the voltage uA does not contain dc component. If the voltage 
uA contains this component, formula (103) can be modified to 
include it. Thus, taking into account Eq. (97), the load current 
can be decomposed into four physical components (CPC) 

i = iaA + isA + irA + iB                           (105) 

They are mutually orthogonal (35); hence their rms values ful-
fill the relationship 

||i||2 = ||iaA||2 + ||isA||2 + ||irA||2 + ||iB||2             (106) 

This relation can be visualized with the help of the polygon 
shown in Fig. 24, with sides whose length are proportional to 
the CPC rms value. It can be drawn, of course, with any sequ-
ence of the sides.  

 
Figure 24. Geometrical illustration of the relationship between the 
rms values of the CPC in single-phase circuits with harmonic gene-
rating loads.  

Four different power phenomena are responsible for the 
rms value of the load current. The interpretation of the active, 
scattered and reactive currents is similar to that for linear, time-
invariant loads. However, these power currents in circuits with 
HGL are associated with only a part of the voltage observed at 
the cross-section x-x, namely, with the supply-originated vol-
tage uA, and therefore with the supply source harmonics. The 
load generated current, iB, not only increases the current rms 
value but also reduces the active power at the load terminals, 
since the active power associated with this current, PB, is 
negative. It dissipates in the supply source resistance.  

When the load is linear and time-invariant, then the load 
current contains only the supply-originated current (i.e., i = iA), 
and the load active power P = PA. The presence of the load-
generated current iB increases the active power loss in the 
supply source; thus it increases fuel consumption by the 
electric energy producer and the needed power ratings of the 
equip-ment. At the same time, the load-generated power PB 
reduces the active power P and the bill for energy delivered to 
the customer, which is proportional to the integral of the active 
power, P. Thus, energy producers are loosing part of their 
revenue (53) when they serve harmonics generating loads. 

The voltages uA and uB are orthogonal; thus the rms value 
of the supply voltage is equal to 

2 2
A B|| || || || || ||u u u= + 2                       (107) 

and the apparent power at the cross-section x-x can be expres-
sed as 
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with  
2 2 2

A A A A sA|| || || || =S u i P D Q⋅ + + A                  (109) 

B B B|| || || ||S u i⋅ ,       2 2 2 2
E A B B A|| || || || || || || ||S u i u i+      (110) 

The apparent power denoted by SA is the supply-originated 
apparent power, while that denoted by SB is the load-generated 
apparent power. The load-generated apparent power only 
occurs when there is a voltage response uB to the load-gene-
rated current iB, that is, when the supply source has an internal 
impedance. The last component of the apparent power, SE, 
occurs even in an ideal circuit, when the supply voltage source 
is connected with a current source of harmonic orders different 
than the supply voltage harmonics. The voltage source of 
voltage uA and current iA has to withstand the extorted current 
iB. When this voltage source has an impedance then the voltage 
uB is extorted as well. Therefore, the power SE is referred to as 
an extorted apparent power.  

The power equation for the circuit considered in the illus-
tration at the beginning of this Section can be written just in 



terms of apparent powers S, PA, PB, SB and SE. All other 
powers are equal to zero. 

The power factor λ of a source with a HGL can be expres-
sed in the form 
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                     (111) 

which shows all causes of its degradation. Very often the inter-
nal voltage of the supply source can be considered as purely 
sinusoidal of the fundamental frequency, which means uA = u1. 
In such a case PA = P1, DAs = 0, QA = Q1. Moreover, a 
displacement power factor λ (43), equal to the cosine of the 
phase shift of the voltage and current fundamental harmonics, 
can be separated in such a case, namely   
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is a current distortion factor. 

THREE-PHASE SYSTEMS - DOUBTS WITH RESPECT 
TO APPARENT POWER DEFINITIONS 

The basic structure of a three-phase, three-wire systems is 
shown in Fig. 25. 

 

Figure 25. Structure of three-phase, three-wire system 

There were numerous attempts to explain and describe power 
properties of three-phase systems with nonsinusoidal voltages 
and currents using Budeanu’s or the Fryze’s approach to power 
definitions. Unfortunately, even apparently successful results 
of such an extension convey all misconceptions and 
deficiencies of these two approaches with such an extension. 
Also, an extension from sinusoidal to nonsinusoidal condition 
requires that power properties of three-phase systems in sinu-
soidal conditions are described properly. Unfortunately, the 
commonly used power equation of three-phase systems  

S2 = PP

2 + Q2                                       (114) 

provides a true value of the apparent power and power factor 
only if the load is balanced. Some misconceptions with respect 
to definition of the apparent power are demonstrated below. 

The active and reactive powers in three-phase, three-wire 
systems, shown in Fig. 25, with sinusoidal supply voltage and 
sinusoidal line currents are defined as follows 

R R S S T T f f f
f =R,S,T0

1 ( + + ) cos
T

P = u i u i u i dt = U IT ϕ∫ ∑          (115) 

f f f
f =R,S,T

sinQ = U I ϕ∑                               (116) 

The apparent power in such systems is defined according to the 
conclusion (68) of the joint committee of AIEE and NELE 
(presently, Edison Institute) in 1920. According to (68), the 
apparent power is defined as 

G
2 2S P Q S= + =                                 (117) 

This quantity is known as the geometric apparent power. It can 
also be defined as 

R R S S T T AS = U I U I U I S+ + =                        (118) 

It is known as the arithmetic apparent power. These definitions 
are provided by the IEEE Standard Dictionary of Electrical 
and Electronics Terms (5). There is a third definition of the 
apparent power, suggested by Buchholz (51) in 1922: 

R S T R S T
2 2 2 2 2 2S U U U I I I S= + + + + = B               (119) 

but not referred to in Standard (5). These three definitions 
result in the same value of apparent power S, only if the line 
currents are symmetrical. Otherwise these values are different. 
This is demonstrated with the following illustration.   
Numerical illustration. Let us consider a single-phase resistive 
load supplied from a three-phase circuit as shown in Fig. 26.  

 
Figure 26. Example of three-phase circuit 

Assuming that the line-to-ground voltage RMS value is 120 V, 
transformer turn ratio is 1:1, the active power at the supply ter-
minals is P = 21.6 kW, while the apparent power, depending 
on the definition, is 

SA = 24.9 VA, SG = 21.6 kVA, SB = 30.5 kVA B

Consequently, power factor depends on the selected definition 
of the apparent power and is equal to, respectively, 

λA = 0.86,    λG = 1, λB = 0.71 B

The reactive power in the system considered is Q = 0, thus, 
power equation (114) is satisfied only for the geometric defini-
tion of the apparent power. However, the question arises: is the 
power factor of such an unbalanced load equal to λ = 1?  



The apparent power is not a physical, but a conventional 
quantity. Various objectives could be taken into account when 
a convention for the apparent power definition is selected. One 
of them, and probably particularly important, is such a 
definition that results in such a value of power factor that 
characterizes correctly the power loss at energy delivery. In 
such a case, the issue of selection of the apparent power 
definition is equivalent to the question: which value λA, λG or 
λB characterizes power loss on energy delivery? 
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The answer to this question was based on the following 
reasoning presented in (70) in 1999. At first, a circuit with a 
balanced resistive load was found, a circuit that at the load 
active power P = 100 kW has the power loss, ΔPs = 5 kW, on 
delivery. Parameters of such a circuit are shown in Fig. 27.  

 

Figure 27. Circuit with balanced resistive load 

In the next step, the same source supplies an unbalanced resis-
tive load, shown in Fig. 28, with the same active power P = 
100 kW.  

 

Figure 28. Circuit with unbalanced load 

Depending on definition of the apparent power, it is equal to 

SA = 119 kVA,    SG = 100 kVA,    SB = 149 kVA B

and the power factor is equal to, respectively, 

λA = 0.84,              λG = 1,                λB = 0.67 B

Observe, that in spite of the same load active power, the power 
loss on energy delivery has increased in the circuit with the 
unbalanced load from ΔPs = 5.0 kW to ΔPs = 11.2 kW. It 
means that the load shown in Fig. 28 is not a load with unity 
power factor. This conclusion disqualifies geometric definition 
(117) of the apparent power. However, still we do not know 
whether λA or λB provides the true value of the power factor. 
To answer this question, let us find the power factor of a balan-
ced RL load that supplied from the same source will have the 
same active power, P = 100 kW, and will causes the same 
power loss, ΔP

 

Figure 29. Balanced load equivalent to unbalanced load in Fig. 28 
with respect to power loss in the source 

The load in this circuit is balanced thus, the apparent power 
does not depend on the selected definition of the apparent 
power and SA = SB = 149 kVA. Consequently, the power factor 
is λ

B

BB

u i

 = λ = 0.67. It means that the power factor has a true value 
only if the apparent power S is calculated according to 
definition (119). Arithmetic and geometric definitions of the 
apparent power result in an erroneous value of the power 
factor. However, when the apparent power S is calculated 
according to definition (119), power equation (114) is not 
fulfilled. Thus, this power equation is erroneous even for 
sinusoidal voltages and currents. It is true only for balanced 
loads supplied with a symmetrical voltage. However, power 
properties of such sys-tems are trivial and could be described 
phase by phase as properties of single-phase systems. 

CURRENTS’ PHYSICAL COMPONENTS OF THREE-PHASE, 
LINEAR, TIME-INVARIANT (LTI) LOADS 

To describe a three-phase system as a whole, not only as a con-
nection of three separate phases, it is convenient to arrange the 
phase voltages and currents observed at terminals R, S and T of 
a three-phase circuit, as shown in Fig. 25, into three-phase 
vectors (34), namely 
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u t
u t t
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Let us consider a three-phase device shown in Fig. 30. 

 
Figure 30. (a) Three-phase, three-wire symmetrical device and (b) 
single-phase device with current rms value ||i|| equivalent to the three-
phase current rms value ||i||

2

 with respect to the active power loss. 
B

s = 11.2 kW. Such an RL balanced load has 
parameters shown in Fig. 29. 

When the current i flows through a three-phase device 
shown in Fig. 30(a), then the active power of this device is 
equal to 

R R S S T T
2 2|| || || || || ||P r i r i r i= + +                      (121) 



Three-phase equipment is built so that it is as symmetrical as 
possible, thus, it can be assumed that rR = rS = rT = r. In such a 
case 

T
R S T

2 2 2

0

1(|| || || || || || )  = ( ) ( ) || ||
T

P r i i i r t t dt rT= + + ∫ i i i
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2      (122) 

where superscript T denotes a matrix transposition. The quan-
tity 

T
R S T

2 2

0

1|| || ( ) ( ) || || || || || ||
T

t t dt i i iT = + +∫i i i 2         (123) 

is referred to (34) as the rms value of a three-phase current. 
This is the rms value of the single-phase current in a circuit 
shown in Fig. 30(b), which is equivalent to the three-phase 
current with respect to the active power in a symmetrical three-
phase, three-wire device. Similarly,  

T
R S T

2 2

0

1|| || ( ) ( ) || || || || || ||
T

t t dt u u uT = + +∫u u u 2       (124) 

is referred to as the rms value of a three-phase voltage.  
The instantaneous power p(t) of a three-phase load is 

defined as the rate of energy W(t) flow to the load, namely 

T
R R S S T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =dp t W t u t i t u t i t u t i tdt= = + + u i      (125) 

The instantaneous power p(t) in three-phase systems with a 
symmetrical and sinusoidal supply voltage u and a balanced 
load is constant, equal to the load active power P, indepen-
dently of the load reactive power Q. This means that reactive 
power may occur in such a circuit without any reciprocating 
oscillation of energy between the supply source and the load. 
On the other hand, if the supply voltage u in such a system 
contains harmonics, than the instantaneous power p(t) contains 
oscillating components even if the load is purely resistive and 
consequently the power factor is equal to one. Though some 
authors (46) claim that all nonactive powers occur only due to 
energy oscillation, there is no relation between such a recipro-
cating oscillation of energy between the load and the supply 
source and reactive power Q in three-phase systems. Also, it is 
important to observe that a single term, for example, uR(t) iR(t), 
cannot be interpreted (47) as an instantaneous power pR(t) of a 
single phase of the three-phase system, since generally it is not 
possible to separate energy delivered to a three-phase load by a 
single phase. Moreover, any point in a three-phase system 
could be chosen as a reference point without affecting power 
phenomena, whereas single-phase products like uR(t) iR(t) may 
change with the change of the reference point. When, for 
example, terminal R is chosen as a reference, then uR(t) ≡  0 
and pR(t)  0. Thus, there is no relation between such single-
phase voltage and current products and power phenomena in 
three-phase circuits. 

≡

The active power of a three-phase load is defined as the 
mean value of the instantaneous power 

T

0

1( ) ( ) ( ) ( , )
T

P p t t t dtT= = =∫u i u i                 (126) 

The symbol (u,i) denotes the scalar product of a three-phase 
load voltage and current. Generally, the scalar product of three- 
phase vectors, x and y, is defined as 

T

0

1( , ) ( ) ( )
T

t t dT= ∫x y x y t

2

                          (127) 

These quantities are orthogonal when their scalar product is 
equal to zero. The rms values of three-phase orthogonal quanti-
ties fulfill the relationship 

2 2 2|| || || || || || || ||= + = +z x y x y                        (128) 

When the entries of a three-phase vector x have harmonics 
from a set N, the vector can be expressed in the form 
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The scalar product defined with Eq. (127) in the time-domain, 
can be calculated in the frequency domain as  

T( , ) Re *
n n

n N∈
= ∑x y X Y                        (130) 

In particular, the active power of the load can be expressed in 
the frequency-domain as 

T= ( , ) Re *
n n

n N
P

∈
= ∑u i U I                     (131) 

The rms value ||x|| of the vector x can be expressed as 

T
R S T
2 2 2|| || ( , ) ( )*

n n n n n
n N n N

X X X
∈ ∈

= = = + +∑ ∑x x x X X    (132) 

A three-phase load has the active power P on the condition 
that the supply source provides the voltage of the rms value 
||u|| and is capable of providing current of the rms value ||i ||. 
By an analogy to the apparent power of single-phase sources, 
the product of these two rms values can be considered (34, 39, 
51) as the apparent power of three-phase sources, namely 

|| || || || S⋅ =u i                                 (133) 

When voltages and currents are sinusoidal then this definition 
is equivalent to the definition given by Eq. (119). The last 
defini-tion is valid for systems with no sinusoidal voltages and 
current, but with the following restriction. 

The supply source may produce voltage harmonics of the 
zero sequence, in particular, the third order. Such harmonics 
contribute to the voltage rms value ||u|| increase in the distribu-



tion equipment. They cause no current in three-wire systems, 
however, and do not deliver energy to loads. Therefore, when 
the load power factor λ is of concern, the zero sequence 
harmonics should be neglected when the voltage rms value ||u|| 
is calculated. Otherwise, even an ideal resistive balanced load 
would not have a unity power factor, and the customer cannot 
be blamed for that. Consequently, when power properties of 
customers' loads are analyzed, it is assumed that the load vol-
tage u contains no zero-sequence harmonics. 
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Let us assume that a load is supplied symmetrically with a 
single voltage harmonic of the nth-order  

1 1
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and the load current is equal to 
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The complex power of the load for the nth-order harmonic has 
the value 

T *
n n n nP jQS = + = U I n                        (136) 

A symmetrical resistive load having a star structure as shown 
in Fig. 31(b) is equivalent to the load shown in Fig. 31(a) with 
respect to the active power Pn at voltage un, when its phase 
conductance is equal to  

e 2
R3 ||
n

n
n n

P P
G

U
= =

u 2||
n                      (137) 

 
Figure 31. (a) Linear, time-invariant load and (b) symmetrical resis-
tive load equivalent to the load in (a) with respect to the active power 
Pn of the nth-order harmonic. It draws symmetrical active current ian.  

This conductance can be referred to as equivalent conductance 
of the load for the nth-order harmonic. A load of such a con-
ductance draws a symmetrical current 

1a e e( ) ( ) = 2 Re jn t
n n n nt G t G en

ω=i u U         (138) 

which can be referred to as an active current of the nth-order 
harmonic. Its rms value is equal to 

a e|| || || ||n nG=i nu                           (139) 

A symmetrical reactive load having a star structure as shown in 
Fig. 32(b) is equivalent (34, 39) to the load shown in Fig. 32(a) 
with respect to the reactive power Qn at voltage un, when its 
phase susceptance is equal to  
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R3 ||
n

n
n n
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U
= − = −
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n                    (140) 

 
Figure 32. (a) Linear, time-invariant load and (b) symmetrical reac-
tive load, equivalent to the load (a) with respect to the reactive power 
Qn of the nth-order harmonic. It draws reactive current irn. 

This susceptance can be referred to as equivalent susceptance 
of the load for the nth-order harmonic. A load of such a suscep-
tance draws a symmetrical current 

1r e e
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ω
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which can be referred to as a reactive current of the nth-order 
harmonic. Its rms value is equal to 

r e|| || || ||n n|B |=i nu                             (142) 

The equivalent conductance Gen and susceptance Ben are 
the real and imaginary parts of an equivalent admittance (34, 
39) for the nth-order harmonic. 
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Each three-phase load has a delta equivalent load shown in Fig. 
33(b).  

 
Figure 33. (a) Linear, time-invariant load; (b) load having a delta 
structue and equivalent to load (a) with respect to the line current in. 

The complex apparent power Sn of such a load supplied with a 
symmetrical voltage can be calculated as 



RS ST TR
2( ) || ||* * *

n n n n nS Y Y Y= + + u               (144) 

thus, the equivalent admittance Yen of the load for the nth-order 
harmonic is equal to 
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When the load is unbalanced, its current is asymmetrical, 
while the active and reactive currents are symmetrical. There-
fore, the load current contains a component 

u a(n n n n= − +i i i i                        (146) 

referred to (34) as an unbalanced current of the nth-order har-
monic. The crms value of this current in phase R is equal to 

R R R R

RS RS TR TR R

R

u a r

e

R

( ) =

       ( )

       

n n n n

n n n n n n

n n

I I I I

Y U Y U Y U

A U

= − +

= − −       (147) 

where  

ST TR RSR ( *
n n n n nA A Y Y Yβ β− + +         (148) 

is the unbalanced admittance of the load for the nth-order 
harmonic. The symbol β denotes a complex turn coefficient 
dependent on the harmonic sequence, namely 
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1, for negative sequence harmonics
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The unbalanced current in lines S and T is equal to 
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which means that the unbalanced current iun has a sequence 
which is the opposite to the voltage harmonic un. This means 
that it is also opposite to the sequence of the active and reactive 
currents, ian and irn. The unbalanced current iun can be expres-
sed in a compact form as follows 
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Its rms value is equal to 

u|| || || ||n n nA=i                                  (152)  

In such a way, the nth-order load current harmonic has been 
decomposed into three physical components: 

a r u+n n n= +i i i i                                (153) 

Their scalar products (ian, irn) = (ian, iun) = (irn, iun) = 0, thus 
they are orthogonal (39), and hence rms values of the physical  

components of the current harmonics fulfill the relationship 

2 2 2
a r u|| || || || || || || ||n n n= + +i i i i                 (154) 

In three-phase, three-wire systems with sinusoidal wave-
forms, there is no need to keep the index n, and relation (154) 
represents (39) the final decomposition of the load current into 
physical components (CPC), that means the active, reactive and 
unbalanced currents,  

a r u += +i i i i                           (155) 

It is important to observe that the supply current in three-phase, 
three-wire systems is composed, in general, not only the active 
and reactive current, but also an unbalanced current. Their rms 
values satisfy the relationship 

2 2 2
a r u|| || || || || || || ||= + +i i i i                 (156) 

Thus, the unbalanced current contributes to the supply current 
rms value in the same way as the active and reactive currents. 
Observe however, that this equation is developed under the 
assumption that the supply voltage is symmetrical. The current 
decomposition and the power equation of loads at 
asymmetrical supply was developed in (72). 

Equation (156) after multiplying both sides by voltage rms 
value ||u||, results in the power equation 

2 2 2
uS P Q D= + +                          (157) 

with 
u || || || ||D ⋅u i                               (158) 

Power equation (157) is the valid equation of three-phase, 
three-wire systems with sinusoidal voltages and currents. It 
reveals a new, unknown earlier power referred to as the 
unbalanced power Du. The commonly used power equation in 
the form (114) is erroneous. It is valid only if the voltages and 
currents are symmetrical.  

The power factor λ can be related to the current physical 
components and load parameters as follows 
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and this formula shows that the unbalanced current affects the 
power factor in a manner similar to the way that the reactive 
current does.  

It is important to observe (39) that not only the reactive 
current but also the unbalanced current can be compensated by 
a passive reactive compensator. Thus the power factor can be 
improved to unity, independently of the load imbalance. 

When the supply voltage contains harmonics of the orders 
from a set N, then the load current can be expressed as 

a r u( +n n n
n N n N∈ ∈

= = + )n∑ ∑i i i i i                    (160) 

The three-phase load at the distorted voltage u has the same 
active power P as a resistive symmetrical load if its conduc- 



tance is equal to  

e 2|| ||
PG =
u

                                   (161) 
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and such a load draws only the active current from the source, 
namely 

1a e e n( ) ( ) 2 Re jn t

n N
t G t G e ω

∈
= = ∑i u U              (162) 

When the load equivalent conductance Gen changes with the 
harmonic order, a difference 
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occurs in the load current. This is a scattered current. The reac-
tive and unbalanced currents are the sum of the reactive and 
unbalanced harmonic currents, namely 
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1u u( ) 2 Re jn t
n n n n

n N n N
t eA ω

∈ ∈
=∑ ∑i i b U       (165) 

Thus, the load current of a three-phase linear and time-
invariant load supplied with a symmetrical nonsinusoidal 
voltage has four components 

a s r u + = + +i i i i i                         (166) 

Each of these four currents is associated with a different power 
phenomenon, namely, the active power of the load, a change of 
its conductance with harmonic order, a phase-shift between the 
voltage and current harmonics and the load imbalance. There-
fore, similarly as in single-phase systems, they are referred to 
as currents’ physical components, (CPCs). 

The scalar products of all these power currents are equal to 
zero (34), thus they are mutually orthogonal, so that their rms 
values fulfill the relationship 

2 2 2 2
a s r u|| || || || || || || || || ||= + + +i i i i i 2              (167) 

which means, that these four power phenomena contribute to 
the increase of the load current rms value independently of 
each other. This relationship can be illustrated with the 
polygon shown in Fig. 34.  

 
Figure 34. Geometrical illustration of the relationship between the 
rms values ||ia||, ||ir|| and ||iu|| of the currents physical components and 
the supply current rms value ||i|| of three-phase LTI loads.  

Multiplying Eq. (167) by the square of the load voltage rms 
value ||u||2 results in the power equation  

2 2 2 2
sS P D Q D= + + + 2

u

s

                     (168) 

with the scattered power of three-phase loads, defined as 

s || || || ||D ⋅u i                                 (169) 

CURRENTS’ PHYSICAL COMPONENTS AND POWERS 
OF THREE-PHASE HARMONIC GENERATING LOADS 

The previously presented approach to analysis of power phe-
nomena in single-phase circuits with HGLs can be applied to 
three-phase, three-wire circuits, shown in Fig. 35, with HGLs. 

 
Figure 35. General structure of three-phase, three-wire circuits, with 
sub-circuit A assumed to be a load and sub-circuit B assumed to be a 
supply system. 

The sign of the harmonic active power Pn enables us to 
con-clude where the source of this power is located, namely, in 
the supply source or in the HGL, and to decompose the set of 
har-monic orders N into to subsets, NA, NB.  
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If Pn < 0 then Bn N∈  and  
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Thus, similarly as in single-phase circuits, the load current, 
vol-tage and power can be expressed as 
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Interpretation of this decomposition is exactly the same (37) as 
interpretation of such a decomposition in single-phase circuits, 
except that the voltages and currents are superseded by three-
phase vectors of line voltages and currents. The current vectors 
iA and iB are mutually orthogonal; hence  

2 2
A B|| || || || || ||= +i i i 2                            (173) 



For harmonic orders  the three-phase load can be 
considered as a passive load of having equivalent delta struc-
ture as shown in Figure 36 

An N∈
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Figure 36. Equivalent circuit of a three-phase harmonic-generating 
load (A). For harmonics of the order from the set NA, (nonnegative 
Pn) the load is equivalent to a passive linear load. For harmonics of 
the order from the set NB, (negative Pn) the load is equivalent to the 
current source with  jA = iB. 

and equivalent admittance 
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where the harmonic complex power Sn of a three-phase load 
can be calculated as  

T *
n n n nP jQS + =U I n                         (175)  

The remaining harmonics, i.e., of the order n  NB, are consi-
dered to be harmonics of a current source located in the sub-
circuit A, meaning harmonic generating load,  jA(t) = iB(t). 

∈

With respect to the active power PA at voltage uA, the load 
is equivalent to a resistive symmetrical load having a star con-
figuration and the conductance per phase equal to 

A
eA 2

A|| ||
P

G
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                               (176) 

Such a load draws the active current  

iaA  GeA uA                             (177) 

The remaining part of the current iA can be decomposed into 
the scattered, reactive and unbalanced currents 
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Thus, taking into account eqn. (164), the load current can be  

decomposed into five physical components, namely 

i = iaA + isA + irA + iuA + iB.                (181) 

They are mutually orthogonal (38); hence their rms values ful-
fill the relationship 

||i ||2 = ||iaA||2 + ||isA||2 + ||irA||2 + ||iuA||2 + ||iB||2      (182) 

This relation can be visualized with the help of the polygon 
shown in Fig. 37. Five different power phenomena are respon-
sible for the load current rms value. The active, scattered, 
reactive, unbalanced and the load generated current are associ-
ated with these phenomena.   

The voltage vectors uA and uB orthogonal, thus the rms 
value of the supply voltage is equal to 

2 2
A B|| || || || || ||= +u u u 2                            (183) 

and the source apparent power can be expressed as 
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with  
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A A A A sA A u|| || || || =S P D Q⋅ + + +u i AD           (185) 

B B B|| || || ||S ⋅u i ,   2 2 2
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Figure 37. Geometrical illustration of the relationship between the 
rms value of the currents’ physical components and the supply current 
rms value ||i|| in three-phase circuits with harmonic-generating loads.  

Although the extorted apparent power SE and the HGL-origina-
ted apparent power SB look very similar, there is a substantial 
difference between them. There is no power phenomenon 
behind the extorted power SE. It occurs only because the volta-
ges uA and uB as well as currents iA and iB have rms values 
the supply source has to withstand. In the case of the apparent 
SB it can be decomposed not only into the active power PB, but 
also into a scattered, reactive and unbalanced powers, 



dependent on the power phenomena inside of the supply 
source. 

The power factor λ of a three-phase unbalanced HGL can 
be expressed in the form 

A B
2 2 2 2 2 2

A sA A uA B E

P PP
S P D Q D S S

λ
−

=
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           (187) 

This formula reveals all power components that contribute to 
deterioration of the power factor in three-phase circuits with 
harmonic generating loads. 

INSTANTANEOUS REACTIVE POWER p-q THEORY 

Since the main approaches to power theory, as suggested by 
Budeanu and Fryze, were not capable of describing power 
properties and providing fundamentals for compensation of 
single-phase systems, a new concept, known as the Instanta-
neous Reactive Power (IRP) p-q Theory, has been developed 
by Akagi, Kanazawa and Nabae (59) in 1984. It was to provide 
mathematical fundamentals for the control of Pulse Width 
Modulated (PWM) inverter-based switching compensators, 
commonly known as “active power filters”. According to 
Authors (73), the development of the IRP p-q Theory was a 
response to “...the demand to instantaneously compensate the 
reactive power” and the adjective “instantaneous” suggested 
that this theory could instantaneously provide information 
needed for a compensator control. Moreover, harmonic ana-
lysis is not needed for that purpose. Consequently, the IRP p-q 
Theory gained very high popularity (74−79).  

Unfortunately, it was proven in (80, 81) that the IRP p-q 
Theory misinterprets power phenomena in electrical circuits. 
There is no physical phenomenon that is characterized by the 
instantaneous reactive power q. It can occur even in purely 
resistive circuits. Moreover, the instantaneous powers p and q 
do not enable for instantaneous identification of power proper-
ties of the load. They have to be observed over a whole period 
T for that purpose. Moreover, there is no direct relation of 
these two powers to power phenomena. This is because even in 
a sinusoidal situation there are three different phenomena that 
determine power properties of three-phase loads. These are: (1) 
the permanent flow of energy to the load characterized by the 
load active power, P; (2) phase shift between the voltage and 
current characterized by the load reactive power Q; and (3) the 
load current asymmetry and consequently, the load unbalanced 
power D. Three different phenomena cannot be identified with 
only two power quantities, p and q, the Instantaneous Reactive 
Power p-q Theory is based upon.  

ADVANCED TOPICS THAT HAVE NOT BEEN DISCUSSED  

The Currents’ Physical Components (CPC) Power Theory is 
currently the most powerful tool for explanation and descrip-
tion of power phenomena in electrical systems with sinusoidal 
and nonsinusoidal voltages and currents. It applies not only to 

single-phase, but also to three-phase, three-wire systems with 
linear, time-invariant loads as well as with harmonic generating 
loads. The CPC Power Theory has proved its effectiveness in 
revealing major misconceptions in power theories developed 
by Budeanu, Fryze, Shepherd and Kusters, as well as in the 
Instan-taneous Reactive Power p-q Theory.  

The CPC Power Theory is also a major theoretical tool for 
design and control of compensator for improving the power 
factor and reducing harmonic distortion. It provides fundamen-
tals for design of reactive compensators both of the reactive 
current (32, 82), scattered current (36) and unbalanced currents 
(42, 83, 84). It can also be used, instead of the IRP p-q Theory, 
as a fundamental for switching compensator control algorithm 
(62, 85, 86, 94). As it was demonstrated in (86), the CPC-based 
control algorithm is more universal than the IRP p-q Theory-
based algorithm and enables external controllability and 
adaptive operation of the compensator.  

The progress in the development of the power theory of 
nonsinusoidal systems, obtained mainly due to the CPC con-
cept, now enables (87) an extension of this theory beyond its 
traditional scope, meaning power phenomena and compensa-
tion in systems with periodic voltages and currents.  

Due to fast varying, or in particular, pulsing loads, voltages 
and currents are loosing periodicity and consequently, the har-
monic approach and the CPC power theory in its classical form 
cannot be applied. However, voltages and currents in electrical 
systems with time-varying or pulsing loads can be considered 
as semi-periodic. This concept is explained in (88). It was 
demon-strated in (87) that the CPC-based power theory can be 
exten-ded to systems with semi-periodic quantities and 
conesequ-ently, it enables description of power phenomena in 
such systems in power terms and provides a control algorithm 
for switching compensators (89).  

The Reader should be aware that this article does not cover 
all issues on harmonics and powers. Due to an increase in 
number and in power of loads that cause current distortion, 
there is a lot of research on systems with nonsinusoidal volta-
ges and currents. The scope of this research is very wide. There 
is still research related to mathematical fundamentals of ana-
lysis of such systems (90-92) and attempts aimed at standar-
dization (7) of power quantities, based on an intuition rather 
than on a rigorous analysis of power phenomena. A lot of 
research is focused on compensation. This includes research on 
control algorithms for individual switching compensators (85, 
86, 93, 94, 95) and on optimization and compensation of the 
whole system (96, 97). 
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