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Currents’ Physical Components (CPC) concept: 
a fundamental of Power Theory 

 
Abstract. The paper introduces Readers to currently the most advanced power theory of electric systems with nonsinusoidal voltages and 
currents, along with fundamentals of their compensation, based on the concept of Currents’ Physical Components (CPC). It includes single-
phase systems and unbalanced three-phase systems with linear, time-invariant (LTI) and harmonic generating loads (HGLs). 
 
Streszczenie. Artykuł jest wprowadzeniem do najbardziej obecnie zaawansowanej teorii mocy systemów elektrycznych z niesinusoidal-
nymi przebiegami prądu i napięcia, wraz z podstawami ich kompensacji, opartej na koncepcji Składowych Fizycznych Prądu (Currents’ 
Physical Components – CPC). Obejmuje on układy jednofazowe oraz niezrównoważone układy trójfazowe, zasilane trójprzewodowo, z 
liniowymi odbiornikami stacjonarnymi (LTI) oraz z odbiornikami generującymi harmoniczne prądu (HGL).  
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Introduction 

The Currents’ Physical Components (CPC) concept is 
presently the most advanced form of the power theory of 
systems with periodic and with semi-periodic voltages and 
currents. It applies to the most broad as compared to other 
concepts, class of systems: to single-phase and to three-
wire unbalanced systems with linear, time-invariant (LTI) 
loads and with harmonic generating loads (HGLs).  

The CPC approach is a product of 25 years of develop-
ment. Its presentation within the limits of one paper is not 
possible. This paper explains only a “backbone” of the CPC 
concept, while its details can be found in references. Some 
of them, in *.pdf format, and other not referenced papers 
related to the subject, can be found at www.lsczar.info.  

The CPC concept is the first approach to the power 
theory that has provided complete physical interpretation of 
power phenomena in electric systems. It is also the first one 
that provided fundamentals for power factor improvement 
with reactive compensators under nonsinusoidal conditions, 
both in single-phase and in three-wire systems. It also intro-
duced a number of new concepts to electrical engineering, 
such as scattered current and power [12, 18] load genera-
ted current [17] unbalanced current and power, equivalent 
and unbalanced admittances [16], working current and 
power [37], concept of semi-periodic quantities [28] or the 
concept of quasi-instantaneous compensation [36].  

Also it has proven to be a very effective tool for the inve-
stigations of various concepts of the power theory and it has 
identified a number of misconceptions that have occurred 
during this theory development. It includes studies on 
Budeanu [14], Fryze [25], Kusters and Moore [11] power 
theories; on the Instantaneous Reactive Power p-q Theory 
[31], as well as on apparent power definitions for three-
phase systems [27], or on the Poynting Theorem as a hypo-
thetical fundamental of the power theory [32].  

Power theory 
Power properties of electric systems are only apparently 

simple. They have been debated for more than a century; 
the number of publications be can only roughly estimated. It 
can be a thousand of them. Several papers on powers are 
published each year. Several “schools” that explain these 
properties in a specific way have emerged.  

The reason for this interest is obvious. The rate of ener-
gy delivery, its effectiveness and equipment ratings are spe-
cified in terms of powers and are affected by power related 
phenomena. Taking into account the huge amount of elec- 

tric energy we use, the interest of electrical engineering in 
power properties of electric systems is evident. 

As electrical engineers, we should understand them. We 
should know how to modify electrical systems to improve 
the effectiveness of energy delivery and utilization. There-
fore, motivations for studies of power properties of electric 
systems are both cognitive and very practical in nature. 
Cognitive, or why issues and practical, or how issues are, of 
course, strongly interrelated.  

All these issues are the subject of the power theory of 
electric systems, although the term “power theory” is vague 
and consequently, it can be comprehended in various ways. 
Therefore, before fundamentals of power theory are discus-
sed, the meaning of the term “power theory” and its subject, 
as used in this paper, have to be explained.  

What it is “power theory”? 
Power theory, for sure, is concerned with electric energy 

flow. Does it concern for example, however, with energy 
radiation by antennas?  

As long as the subject of “power theory” is not specified, 
such a question cannot be answered. To avoid any subject-
tive definition, we should look into its meaning when this 
term was introduced.  

The term “power theory” was coined in 1931, by Fryze 
[5], when he undertook an attempt at an explanation of the 
difference between the active and apparent powers, P and 
S. This was a response to Steinmetz observation [1], that 
the apparent power in circuits with an electric arc is higher 
than the active power. It was also a response to conclu-
sions [4] by Budeanu, that this difference can be explained 
in terms of the reactive and distortion powers. Thus, the 
explanation of the difference between the active and appa-
rent powers was the original subject of the power theory.  

The power theory being developed by Budeanu [4] or 
Fryze, [5], Quade [6], Rozenzwig [7], Depenbrock [9], and 
numerous other scientists, was confined to pure cognitive, 
why issues. They were extended by practical, how issues, 
when compensation in systems under nonsinusoidal condi-
tions became more urgent.  

Power theory being developed by Shepherd and 
Zakikhani [8], Kusters and Moore [10], Czarnecki, Nabae 
and Akagi [13], Depenbrock [20], Tenti [30] and numerous 
other scientists, includes both why and how questions.  

Answers to these questions, given by various scientists, 
have occurred to be mutually different. Sorts of “schools” 
around various concepts have emerged, identified as scho-



ols of Budeanu, Fryze, Shepherd and Zakikhani, Czarnecki, 
or Nabae and Akagi power theories.  

Referencing to different concepts of power theory by 
names provides a convenient short-cuts in debates. At the 
some time, however, it diminishes numerous overlaps of 
various concepts and preserves some misconceptions.  

Therefore, it seems that instead of several different 
power theories, it should be regarded as a unique intellec-
tual entity. The entity that represents our knowledge on 
power properties of electric systems. It could be seen as a 
sort of database of all true statements, both verbal or in a 
form of mathematical relations, on power properties of such 
systems. Each valid conclusion on these properties contri-
butes to this theory development. 

Although the term “power theory” in the title of this paper 
is used in the latest meaning, this term associated with 
names will be used, for brevity, as well.  

Subject of power theory 
The subject of the power theory can be described as 

focused on the difference between the active and apparent 
powers, P and S, only if a very concise statement on power 
theory is needed. In fact, this subject includes several 
issues. One could expect that the power theory will provide: 
 (i) – an explanation and physical interpretation of power 

phenomena that accompany energy delivery; 
 (ii) – a definition of power quantities which describe ener-

gy flow and its utilization, as well as can specify 
power ratings of the power equipment; 

(iii) - fundamentals for energy accounts between energy 
producers and customers; 

(iv) - fundamentals for studies on effectiveness of energy 
delivery; 

 (v) - fundamentals for design and control of equipment for 
power factor improvement; 

(vi) - fundamentals for design and control of equipment for 
loading and supply quality improvement. 

Observe moreover, that in case of items (v) and (vi), the 
equipment for power factor and/or quality improvement can 
be built in a form of reactance harmonic filters or compen-
sators or as PWM Inverter-based switching compensators. 
Power theory should provide fundamentals for design and 
control of these substantially different devices.  

Various “schools” of the power theory can be judged by 
a degree of fulfillment of expectations compiled above, 
being aware of such a judgment, however, that these expe-
ctations have emerged gradually. These are present day, 
but not original expectations.  

Confines of power theory 
It would be trivial to say, that power theory, as a part of 

electrical engineering, has to obey rules of mathematics 
and physics. It is located at their junction, as illustrated in 
Fig. 1.  

 

Fig. 1 Power theory as confined by mathematics and physics 

While mathematical entities are usually distinctively defi-
ned, physical entities are founded on experimental obser-
vations, however. Their meaning and interpretation can be 
vague. 

The history of power theory development demonstrates 
long efforts aimed at fulfillment of this scheme. While all 
commonly known concepts of power theory are mathema-
tically correct, most of them have deficiencies from physical 
point of view. Some quantities, claimed to be physical, often 
do not specify any physical phenomenon.  

Expectation that quantities used for describing power 
properties of electric systems should have a physical mean-
ing in the sense illustrated in Fig. 1, should be treated care-
fully, however. Observe that the power equation of single-
phase LTI load supplied with sinusoidal voltage, 

2 2P Q S+ = 2 , 

does not fulfill expectations illustrated in Fig. 1. Only the 
active power P can be regarded as a physical quantity. 
Physical meaning of the reactive power Q is debatable [35], 
while the apparent power S is evidently not a physical quan-
tity. A physical phenomenon that is characterized by appa-
rent power S does not exist.  

Power theory serves technology; and technology often 
needs conventional quantities. The apparent power S is just 
such a conventional, but of a great importance quantity. The 
same is with the power factor, λ = P/S. 

CPC methodology 
There were attempts aimed at developing power theory 

as a whole that would include all situations possible in 
power systems. At the same time, it was not capable of 
explaining power properties of LTI single-phase RL loads at 
nonsinusoidal voltage and improve their power factor.  

Century long attempts aimed at understanding power 
properties of electric systems have shown that this is a very 
tangled issue. The CPC concept, used to untangle it, fol-
lows therefore, very old but reliable methodology, introdu-
ced to physics by Galileo Galilei. The theory is built up, 
step-by-step, starting from the most simple situations, using 
simplified models of real systems. We can proceed to a 
level with higher complexity only after the theory at the 
lower level is thoroughly verified. Such a most simple 
situation is in single-phase circuits with LTI loads. Observe 
however, that all attempts aimed at the power theory deve-
lopment, before CPC-concept, have failed to explain power 
properties of even such simple circuits and provide any 
fundamentals for power factor correction. 

CPC in single-phase circuits with LTI loads 
Development of the CPC-based power theory started in 

1984 in Ref. [12], with explanation of power properties of 
single-phase circuits with LTI loads supplied with nonsinu-
soidal voltage, followed by the first method of compensa-
tion of reactive current.  

Let us assume that a linear time-invariant load, shown in 
Fig. 2, is supplied with voltage 
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Fig. 2 Linear time-invariant (LTI) load 

The load can be characterized by admittance for har-
monic frequencies 

n nG jBY + n , 

thus, the load current can be expressed as 
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 We can assume, after Fryze [5], that the load current 
contains active component, known as the active current, ia. 
It is the current component proportional to the supply vol-
tage u(t), of minimum value needed for energy permanent 
delivery to the load with the average rate equal to the active 
power P. It can be expressed as  
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Since the active power of a resistive load is , 
such a load is equivalent with respect to the active power P 
at voltage u(t) to the original load, if its conductance is 
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It is referred to as equivalent conductance. The remain-
ing component of the load current, after subtracting the 
active current, is equal to  
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It can be decomposed into the following components 
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 This decomposition reveals that two entirely different 
phenomena contribute to ths useless component of the sup-
ply current of LTI loads at nonsinusoidal supply voltage:  
1. The presence of the current harmonic component shifted 

by 900 with respect to the voltage harmonics. Their sum 
is the reactive current, ir(t). It is identical with the 
Shepherd and Zakikhani’s [8] quadrature current.  

2. The difference of the load conductance Gn for harmonic 
frequency from the load equivalent conductance, Ge. 
The sum of these components creates current is(t). 
Since it occurs when conductances Gn are scattered 
around the equivalent conductance Ge, this current was 
called in Ref. [12] a scattered current. The presence of 
the scattered current in the supply current of LTI loads is 
a new phenomenon reveled by this decomposition. 

Thus, the supply current of LTI loads at nonsinusoidal sup-
ply voltage can be expressed as  
(4)                            ,  a s r( ) ( ) + ( ) + ( )i t i t i t i t=

The change of the conductance is not an “exotic” pro-
perty, but a common property of LTI loads. Consider, for 
example, the RL load shown in Fig. 3. Its conductance 
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Fig. 3 Example of RL load 

This conductance for parameters shown in Fig. 3 is 

G0 = 1 S,  G1 = 0.5 S,  G2 = 0.2 S,  G3 = 0.1 S,  G4 = 0.06 S,  
thus, it changes with harmonic order. The load current of 
such a common load at nonsinusoidal supply voltage has to 
contain a scattered current. 
 Thus, the current of LTI loads at nonsinusoidal supply 
voltage contains three components associated with three 
distinctively different physical phenomena in the load:  

1. Permanent energy conversion: - active current, ia(t). 
2. Change of the load conductance Gn with harmonic 

order - scattered current, is(t). 
3. Phase-shift between the voltage and current harmo-

nics: - reactive current, ir(t).  
Therefore, these currents were called Current’s Physical 
Components (CPC). The adjective “physical” does not 
mean however, that these currents do exists physically. 
They do not exist as physical entities, but like harmonics, 
only as mathematical entities, associated with some phy-
sical phenomena in the load.  
 Their rms value is equal to 
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Symbol N0 denotes set N of orders n, along with n = 0. 
The possibility of calculating the supply current rms 

value having rms values of currents ia, is and ir depends on 
orthogonality of these currents, i.e., whether their scalar 
products are equal to zero.  

The scalar product of periodic quantities x(t) and y(t) is 
equal to 

0
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Thus CPC are mutually orthogonal and consequently 
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This relationship can be visualized with a rectangular box 
shown in Fig. 4. 

 
Fig 4. Rectangular box of rms values of CPC 

If the length of the box edges is proportional to rms values 
of current’s physical components, then the box diagonal is 
proportional to the load current rms value, ||i||. 



Multiplying eqn. (8) by the square of the voltage rms 
value, the power equation of LTI loads is obtained 
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sS P D Q= + + 2

s

where  
(10)                 s || || || ||D u i    and   , r|| || || ||Q u i
are scattered power and reactive power, respectively.  
 Equation (9) resembles Budeanu’s equation only appa-
rently. In fact, the reactive power Q is defined in a different 
way than the Budeanu’s reactive power. The scattered pow-
er Ds has nothing in common with the distortion power. 
 Illustration 1. Let us calculate the rms value of the sup-
ply current physical components of the load shown in Fig. 5, 
if the supply voltage is 
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1
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Fig. 5 Example of LTI load 

The supply voltage rms value is 

|| || = 113.58 V.u  

The set of voltage harmonics is N0 = {0,1,5} and the load 
admittance for harmonic orders from this set is equal to  

Y0 = 1 S,    Y1 = 0.5 S,    Y5 = 0.04 +j2.31 S, 
and consequently, the supply current is 

0
1 1589 = 50 + 2 Re{50 + 46.2 e }Aj t j tji e ω ωe , 

and its rms value is equal to 
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To decompose the supply current into physical components 
and calculate their rms value, the active power and 
equivalent conductance of the load have to be calculated. 
The active power is 
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so that, the equivalent conductance of the load has the 
value 

e 2 2
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The rms values of the supply current physical components 
are equal to 
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 It is easy to verify that the calculated rms values satisfy 
relationship (8) and indeed 

2 2 2 2 2 2
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 Thus, decomposition (4) is strictly satisfied even for very  
high distortion. This conclusion is trivial to some degree,  

because decomposition (4) was not founded on any appro-
ximations. The scattered and reactive powers of the load 
shown in Fig. 5 are equal to  

Ds = 2.83 kVA    and   Q = 5.25 kVAr. 

Compensation of LTI loads 
Traditionally, a compensator was a reactance device 

connected at the load terminals, for example, a capacitor, or 
even an overexcited synchronous machine, that made a 
reduction of the reactive current rms value, thus an 
improvement of the power factor, possible. Now, this term 
has a much wider meaning, both as to objectives and 
technical tools. Not only the reactive current, but also load 
current harmonics, load imbalance, or power variation can 
be objectives of compensation. The supply voltage asym-
metry or this voltage harmonic distortion can also be 
compensated. Compensators can be built not only as reac-
tance devices, but also as controlled current sources that 
inject compensating current into supply lines or as control-
led voltage sources that inject compensating voltage. They 
can be built with fixed parameters or as adaptive devices, in 
simple or in hybrid structure.  

In spite of complexity of the present-day objectives [37] 
and technical tools available, the question: whether the 
power factor of a load under nonsinusoidal conditions can 
be improved by a reactance compensator or not? was for a 
long time, and it is even now, a major practical issue of the 
power theory. The CPC-based power theory was the first to 
provide the confirmative answer, with very simple, as fol-
lows, reasoning. 

A lossless reactance compensator, connected as shown 
in Fig. 6, of admittance for harmonic frequencies YCn = jBCn, 
assuming that it does not affect the supply voltage, does not 
affect the active and scattered currents.  

 
Fig. 6 LTI load with LC compensator 

It modifies only the reactive current to 
1
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and its rms value to 
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In particular, this current is compensated entirely, on the 
condition that for each n∈ N, 
(11)                                   Cn nB B= − . 

Thus, the maximum value of the power factor of LTI loads 
at reactance shunt compensation cannot be higher than 
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 The question: whether LTI loads can be compensated to 
unity power factor with reactance compensator or not?  was 
solved in Ref. [18]. Such compensation is possible. It requi-
res, however, that a reactance compensator has not only a 
shunt, but also a series branch. Due to such compensator 
complexity, its practical value is rather questionable. The 
confirmative answer to the question formulated above has 
only some theoretical merit. 



CPC in single-phase circuits with HGLs 
 Linear time-invariant (LTI) loads cannot be sources of 
harmonics. To check how load-generated current harmo-
nics affect power properties of a circuit, let us consider a 
purely resistive circuit shown in Fig. 7. It is assumed that at 
the supply voltage 

1 1100 2 sin   Ve e tω= = , 

the third order current harmonic  

3 150 2 sin3   Aj j tω= = , 

is generated in the load 

 

Fig. 7 Resistive circuit with HGL 

The voltage and current at the load terminals are equal to 

1 3 1 180 2 sin  40 2 sin3   V,u u u t t= + = −ω ω  

1 3 1 120 2 sin + 40 2 sin3   Ai i i t t= + = ω ω , 
thus, the active power is zero, since 
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Observe that there is neither a phase-shift between voltage 
and current harmonics, nor any change of the load con-
ductance with harmonic order, thus no reactive and scat-
tered currents and powers. The apparent power S at the 
supply terminals is equal to 

 = || || || || = 89.44 44.72 4000 VAS u i × = , 
but we are not able to write the power equation in form (9).  
 It is easy to find the reason for it. Namely, it is caused by 
the presence of the active power associated with the third 
order voltage and current harmonics, of the negative value, 
P3 = − 1600 W. When a current harmonic is generated in 
the load, it is a source of energy flow from the load to the 
supply source, where this energy is dissipated on the sup-
ply source resistance. Thus, there is a current component in 
the supply current, which cannot be interpreted as a reac-
tive or a scattered current, but it does not contribute to the 
load active power P. Quite opposite, it reduces that power. 
This component can be associated with energy flow in the 
opposite direction to the normal flow, meaning, back from 
the load to the supply source. Thus, generation of current 
harmonics in the load, due to its nonlinearity or periodic 
time-variance, has to be considered [17] as a phenomenon 
that affects power properties of electric circuits.  

 
Fig. 8 Cross-section between distribution system (D) and customer 
load (C) 

 The presence of current harmonics generated in the 
load can be identified by measuring the phase angle, ϕn, 
between the voltage and current harmonics, un and in, at the 
cross-section between distribution system (D) and the cus-
tomer (C) load, as shown in Fig. 8. Since the active power 
of the nth order harmonic is equal to 

cosn n nP U I= nϕ , 
then, if 

|ϕn| < π/2, 

there is an average component of energy flow at the nth or-
der harmonic from the supply towards the load, and if  

|ϕn| > π/2, 
there is an average component of energy flow at nth order 
harmonic from the load back the supply source.  
 With this observation, the set N of all harmonic orders n 
can be decomposed into sub-sets ND and NC, as follows 
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It enables the voltage and current decomposition into 
components with harmonics from sub-sets ND and NC, 
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The voltage uC is defined as the negative sum of voltage 
harmonics because, as a supply source response to load 
generated current, iC, it has the opposite sign as compared 
to the sign of the distribution system originated voltage har-
monics. The same applies to harmonic active power, thus 

(16)         
D C

D Cn n n
n N n N n N

P P P P P
∈ ∈ ∈

P= = + −∑ ∑ ∑ .  

 Sub-sets ND and NC do not contain common harmonic 
orders n, thus currents iD and iC are mutually orthogonal. 
Hence their rms values satisfy the relationship 

D C
2 2|| ||  = || || + || ||i i i 2

2

. 
The same applies to the voltage rms values, namely 
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 Decomposition (13) of harmonic orders and the voltage 
and current according to (14) and (15), mean that the sys-
tem, as presented in Fig. 7, can be described as superposi-
tion of two systems. The first, shown in Fig. 9a, has a LTI 
load and the second, shown in Fig. 9b, has only a current 
source on the customer side while the distribution system is 
a passive energy receiver. 

 
Fig. 9 (a) Equivalent circuit for harmonics n ∈ ND  
and (b) equivalent circuit for harmonics n ∈ NC

The circuit in Fig. 9a, as a system with a LTI load, can be 
described according to the CPC approach. Namely, if the 
equivalent admittance is  

n
n n n

n
G jB IY U= + = , 

and the equivalent conductance: 
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D
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then the current iD can be decomposed into the active, 
scattered and reactive components, namely 

iD = ia + is + ir, 
and eventually, the load current can be decomposed into 
four physical components,  

(17)                          i = ia + is + ir + iC. 
These currents are mutually orthogonal, hence 

(18)               . C
2 2 2 2

a s r|| || = || || + || || + || || + || ||i i i i i 2

This relation can be visualized on the diagram shown in 
Fig. 10. 

One can observe, however, that the active current in 
decomposition (17) is not defined according to Fryze, but as 

(19)                             .  Da eDi G u

It is equal to the conventional Fryze’s active current only if 
harmonics are not generated in the load, i.e., only if sub-set 
NC is empty, thus N = ND.  

 
Fig. 10 Diagram of CPC rms values  in a circuit with HGL 

Confusion with powers in three-phase systems 
A Reader of this paper should be aware that in spite of 

long lasting investigations on powers in three-phase sys-
tems, which stared in 1920 with Lyon [2], Buchholz [3], 
Quade [6], Rosenzweig [7], power properties of such sys-
tems, even under sinusoidal conditions, were not correctly 
identified by the last decade. There is confusion [26] even 
on how the apparent power, S, in three-wire systems should 
be defined, since three different definitions coexist in elec-
trical engineering now, namely,  

R R S S T T AS U I U I U I S+ + = , 

G
2 2S P Q S+ = , 

(20)            R S T R S T B
2 2 2 2 2 2S U U U I I I S+ + + + = ,  

These definitions result in the same value of the apparent 
power S, only if the line currents are sinusoidal and sym-
metrical. Otherwise these values are different and conse-
quently, the power factor, λ = P/S, has different values. 

 
Fig. 11 Example of a three-wire system 

The apparent power S in the system shown in Fig. 11 is 
equal to 

SA = 83.8 kVA,       SG = 72.6 kVA,        SB = 102.7 kVA. 

Since the load active power is P = 72.6 kW, the power fac-
tor, depending on the apparent power definition, is 

λA = 0.86,           λG = 1,             λB = 0.71. B

2

 A reasoning that has enabled selection of the right defi-
nition of the apparent power S was presented in Ref. [27] in 
1999. It was demonstrated in that paper that energy loss at 
its delivery and consequently, the power factor value are 
calculated correctly if the apparent power is defined accord-
ing to definition (20), suggested by Buchholz [3] in 1922.  

The main issue is that the apparent power calculated 
according to Buchholz’s definition does not fulfill the com-
mon power equation of three-phase systems: 

2 2S P Q= + . 

These powers in the system shown in Fig. 10 are equal to: 
S = SB = 102.7 kVA, P = 72.6 kW, and Q = 0. Unfortunately, 
none of the approaches to power theory before the CPC 
development have managed to solve this problem. 

CPC in three-wire systems with sinusoidal 
voltages and currents 

Let us consider an equivalent circuit configured in Δ of a 
three-phase three-wire load shown in Fig. 12. 

 
Fig. 12 Equivalent circuit of a three-phase load 

Supply currents of such a load can be arranged in a three-
phase vector and expressed as 

R R

S S

T T

2Re 2Re { }j t je e
i I
i I
i I

tω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i I . 

At a symmetrical supply voltage of positive sequence, the 
supply current can be expressed in the form 

(21)           e e2Re{[( ) ] }j tG +jB eA ω= + #i U U ,  
where 

R R

S T

T S

,           
U U
U U
U U

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

#U  U , 

(22)                RS ST TR+e eG jB Y Y Y Y+ + e= , 

is equivalent admittance, while  

(23)              ST TR RS ( ) j* eAY Y Y A ψα α+ +− , 

is unbalanced admittance of the load. Having the supply 
current i expressed in the form (21), we can define three 
current components, namely, the active current 

(24)                          a e2 Re { }j tG e ωi U , 

the reactive current 

(25)                          r e2 Re { }j tjB e ωi U , 

and the unbalanced current 

(26)                          #
u 2 Re{ }j teA ωi U , 

thus, the supply current of LTI three-phase loads is equal to 
B



(27)                              i = ia + ir + iu. 

These three currents are associated with distinctively differ-
rent phenomena: 

1. permanent energy conversion - active current, 
2. phase-shift - reactive current, 
3. load imbalance - unbalanced current, 

therefore, they can be regarded as physical components of 
the supply currents. 

To verify whether these currents affect energy loss at 
delivery independently of each other or not, concepts of 
scalar product, introduced in [15], and orthogonality of 
three-phase quantities are needed.  

The scalar product of three-phase quantities was defi-
ned for three-phase vectors x(t) and y(t) as  

T

0

1( , ) = 
T

dtT ∫x y x y , 

and by analogy to single phase systems, the three-phase 
rms value was defined in Ref. [15] as  

T T

0

*1|| || ( , )  = = 
T

dtT ∫x x x x x X X , 

This three-phase rms values for the active, reactive and 
unbalance currents are equal to 

||ia|| = Ge ||u||,  

  ||ir|| = |BB

}

2

2

*

2

2

e| ||u||,  

||iu|| = A ||u||. 
These three currents are mutually orthogonal on the condi-
tion that their scalar products are equal to zero. The scalar 
product for sinusoidal quantities can be expressed as 

T *( ) = Re{,x y X Y . 

Scalar products of CPC defined with (24-26) are 

T T
a r a r e e e e

* *( , ) = Re{ } = Re{ ( ) } = Re{ || || } = 0G jB jB G−i i uI I U U , 
T T

a r a r e e e e
* *( , ) = Re{ } = Re{ ( ) } = Re{ || || } = 0G jB jB G−i i uI I U U , 

T T
a u a u e

*( , ) = Re{ } = Re{ ( ) } = 0G A #i i I I U U , 

thus, they are orthogonal. Consequently, their three-phase 
rms values satisfy relationship 

(28)                        . 2 2 2
a r u|| || || || || || || ||= + +i i i i

Multiplying this equation by ||u||2, the power equation of 
three-wire systems with LTI loads is obtained 

(29)                             .  2 2 2
uS P Q D= + +

This equation, as compared to the conventional power 
equation, contains a new power,  

(30)                           2
u u|| || || || = || || ,D Ai u u

named in Ref. [15], as the unbalanced power. Only such 
an equation satisfies the power relation when the apparent 
power S is defined according to Buchholz’s definition. The 
active and reactive powers: 
(31)                          2

a e|| || || || = || || ,P Gi u u

(32)                      2
r e|| || || || = || || ,Q B± −i u u

can be directly related to the load equivalent parameters. 
For example, for the load shown in Fig. 11, 

Ye = YRS = 0.5 S,  Ge = 0.5 S,  B

||u|| = 220 3 V,  and hence:  P = 0.5 (220 3 )2 = 72.6 kW,      
Q = 0, Du = 0.5 (220 3 )2 = 72.6 kVA. With these powers, the 
power equation (29) is satisfied, since 

102.72 ≈  72.62 + 0 + 72.62. 

Balancing compensators 
The CPC concept provides an exceptionally simple 

solution to the problem of design of reactance compensa-
tors for three-wire unbalanced systems.  

The reactive and unbalanced components of the supply 
current can be entirely compensated, on the condition that 
the equivalent susceptance BBCe and unbalanced admittance 
AC of the compensator satisfy relations 
(33)                   . e Ce C0,     + = 0B B A A+ =

These conditions can be fulfilled by a reactance balancing 
compensator of the structure shown in Fig. 13.  

 
Fig. 13 Circuit with balancing compensator 

It is enough [16] for this purpose that the line-to-line suscep-
tances of the balancing compensator, TXY, are equal to 

RS e( 3Re Im )/3T BA A= − − , 

(34)                 ,  ST e(2Im )/3T BA= −

TR e( 3Re Im )/3T BA A= − − − . 

Such a compensator can be built with fixed parameters or 
as an adaptive device [23] with thyristor controlled inductors 
(TCI) used for susceptances TXY control. Such control with 
TCI in various structures are discussed in Ref. [21]. 

CPC in three-wire systems with LTI loads and  
nonsinusoidal voltages and currents 

When the supply voltage in three-wire systems is sym-
metrical, positive sequence and nonsinusoidal, meaning 

12 Re jn t
n n

n N n N
e ω

∈ ∈
= =∑ ∑ Uu u , 

but without zero sequence harmonics, then the active, reac-
tive and unbalanced components of the supply current pre-
serve their physical meaning, only all of them are a form of 
the sum of harmonics , namely 

(35)                       1
a e2 Re ,jn t

n
n N

G e ω

∈
∑i U  

(36)                      1
r e2 Re ,jn t

n n
n N

j B e ω

∈
∑ i U  

(37)                       1
u 2 Re ,jn t

n n
n N

eA ω

∈
∑ #i U  

and new components occur [15] in the supply current, 
namely, the scattered current, defined as 

(38)                  1
s e e2 Re ( ) ,jn t

n n
n N

G G e ω

∈
−∑ i U  

where the load conductances Gen and Ge are defined as  

(39)                       2 2e e,       
|| || || ||

n
n

n

P PG G
u u

.  
Be = 0,  A = − α Y*

RS = 0.5 e S,  j60 



Each of these four currents is associated with distinctively 
different phenomenon in the three-phase load, thus they are 
CPC of the supply currents, such that 

(40)                              .  a s r u= + + +i i i i i

Their three-phase rms values are equal to, respectively, 

(41)                        ,  a e|| || = || ||Gi u

(42)                        2 2
s e e|| || = ( ) || ||n n

n N
G G

∈
−∑i u ,  

(43)                        2 2
r e|| || = || ||n n

n N
B

∈
∑i u ,  

(44)                       2 2
u|| || = || ||n n

n N
A

∈
∑i u .  

These currents are mutually orthogonal, so that 

(45)                  ,  2 2 2 2
a s r u|| || || || || || || || || ||= + + +i i i i i 2

2

n

while the power equation has the form 

(46)                          .  2 2 2 2
s uS P D Q D= + + +

Similarly, as in single-phase systems, the scattered current 
cannot be compensated by any shunt reactance compen-
sator. The reactive and unbalanced currents can be com-
pensated entirely by shunt compensator which may have 
the structure shown in Fig. 12. Unfortunately, as it was 
demonstrated in Ref. [16], entire compensation may require 
very complex compensators and consequently, are not 
practical. These currents can be minimized very effectively, 
however, [19] by compensators composed of no more than 
two LC elements in each compensator branch. 

CPC in three-wire systems with HGLs 
Similarly, as in single-phase systems, current harmonics 

generated in a three-phase load, due to its nonlinearity or 
periodic time-variance, can cause the load, normally an 
energy consumer, to become the source of energy at some 
harmonic frequencies, meaning the harmonic active power 
Pn becomes negative. The load generated current iC occurs 
in such a case in the supply current i. This modifies the 
supply current decomposition to the form 

(47)                      .  a s r u C= + + + +i i i i i i

Calculation of particular currents requires, as it was 
done for single-phase circuits with HGLs, that the set of har-
monic orders N is decomposed into sub-sets ND and NC. It 
was enough in single-phase circuit to observe for that pur-
pose the value of phase angle ϕ n and follow condition (13). 
This condition, for three-phase systems with HGLs, has to 
be modified. The sign of the harmonic active current  

a R R S S T Tcos cos cosn n n n n nI I I Iϕ ϕ ϕ+ + , 

has to be calculated for that purpose. Next, 

(48)                        
0

0
n

n

I n

I n
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if   ,  then ,

if   ,  then .

N

N

2

Remaining calculations do not differ substantially from 
those for single-phase systems with HGLs, only performed 
on three-phase vectors. Moreover, the unbalanced current 
has to be calculated. All these currents are orthogonal, thus 

(49)               ,  2 2 2 2 2
a s r u C|| || || || || || || || || || || ||= + + + +i i i i i i

with 

C

2
C|| || = || ||n

n N∈
∑i i . 

Comments on CPC - based compensation 
 Attention in this paper is focused on cognitive, rather 
then on practical issues, mainly related to compensation. It 
is worthy to emphasize, however, that the CPC concept, by 
providing explanation of power phenomena, provides solid 
fundamentals for compensation [24], [33, 34], [36, 37].  
 The issue of compensation is much too broad to be 
covered here. The paper, in this respect, is confined to only 
a few remarks, important for prospective applications of the 
CPC-based power theory for PWM-based switching com-
pensator control.  
 There is a myth that the CPC-based power theory, as 
being based on the frequency-domain approach, is compu-
tationally too demanding to have any practical value for a 
compensator control. It is not true. In fact, the number of 
multiplications needed for the reference signal generation 
for the compensator control is in the order of ten, so that, 
CPC approach enables a quasi-instantaneous control [36] 
of switching compensators.  
 Owing to a deep insight into power phenomena, capabi-
lities of the CPC approach to compensation are in a strik-
ing contrast to that of the Instantaneous Reactive Power 
(IRP) p-q Theory which misinterprets [31] power phenome-
na. The CPC-based approach enables compensation with 
different objectives [37] in simple or various hybrid structu-
res, [24], or even to build compensator as a programmable 
devices with objectives tailored to specific needs. The IRP 
p-q based approach does not provide such capabilities. 
Moreover, as observed in Ref. [29] and analyzed in details 
in Ref. [38], in the presence of the supply voltage harmonics 
and/or asymmetry, the IRP p-q based algorithms generate 
an erroneous reference signal for the compensator control.  
 There are a few concepts rooted in the CPC concept, 
but which go further, that enable quasi-instantaneous con-
trol of PWM inverter-based switching compensators. These 
are the concepts of working current and working power, 
semi-periodic quantities and a recursive formula for Dis-
crete Fourier Transform (DFT) calculation. These concepts 
are drafted below.  

Working current and power 
Decomposition (47) provides information on how dis-

tinctive, power related phenomena contribute to the current 
three-phase rms value and consequently, energy loss on 
delivery. Power loss on the supply system resistance, 
assumeing that its change with harmonic frequency is 
neglected, is equal to 

2 2 2 2 2 2
a s r u Cs s s|| || (|| || || || || || || || || || )P R RΔ = = + + + +i i i i i i , 

thus, each current, and consequently each phenomenon 
associated with such a current, contributes to this loss inde-
pendently on each other.  

This conclusion has evident cognitive value. One could 
ask, however, whether it has a practical value for formulat-
ing objectives of compensation or not.  

The reactive and unbalanced currents, ir and iu, can be 
entirely compensated or reduced by shunt reactance com-
pensators. The scattered and generated currents, is and iC, 
are not affected by such compensators, however. The ge-
nerated current can be filtered out by resonant harmonic 
filters or compensated by switching compensators, which 
can also compensate other useless currents, meaning the 
scattered, reactive and unbalanced currents. In effect, only 
the active current ia can remain after compensation and 
indeed, this is often regarded, even in this paper, as an 
ultimate objective of compensation. The supply source is 
loaded in such a case only with the active power P, or PD, 
when HGLs are entirely compensated. Observe however, 
that in systems with nonsinusoidal and asymmetrical supply  



voltage, the active current 

a eGi u , 

is nonsinusoidal and asymmetrical. Should however such a 
current be an ultimate objective of compensation?  

A similar question can be asked about the active power, 
P. The term “active” power is regarded usually as a syno-
nym for a “useful” power, but the active power can contain 
both useful and harmful components. Only the active power 
of the positive sequence voltage and current component of 
the fundamental harmonic is a useful power of a synchro-
nous or induction motor. Active power of the negative sequ-
ence and active power of harmonics cannot be converted to 
mechanical power on the motor shaft, but only it contributes 
to the motor temperature and/or mechanical vibration. 
Shunt compensation objectives should take these con-
clusions into account.  

For that purpose, the vector of the supply voltages uR, uS 
and uT, of a three-wire system, in general asymmetrical and 
nonsinusoidal, can be decomposed into vectors of the posi-
tive and negative sequence components of the fundamental 
harmonic u1

p, u1
n, and a harmonic component uh,  

(50)               .  1 11
p n

hn
n N ′∈

= + = + +∑u u u u u u

where N’ denotes set N without n = 1. The active power P of 
a load supplied with such a voltage is composed of active 
powers of the fundamental P1 and all higher order harmo-
nics, Pn, i.e.,  
(51)              ,  p n

1 1 h 1 1n
n N

P = P P P P P P P
′∈

+ + = +∑ h+

while the active power of the fundamental harmonic is com-
posed of active power of the positive and negative voltage 
and current sequences. 

The active power of harmonics, Ph, and that of the 
negative sequence, P1

n, is useful only for resistive loads, 
which do not represent usually the main loads in power sys-
tems. Most of the energy is converted to mechanical energy 
by electric motors. It amounts up to 2/3 in US power 
system. Only the active power of the positive sequence, P1

p, 
stands for such motors as useful power. Also for various 
electronic-types of loads, harmonics and voltage asymmetry 
contribute to extra heat, disturbances or malfunctions, 
rather than to useful work.  

A characteristic name that would clearly distinguish 
power P1

p, from other ones, is needed. It was suggested in 
Ref. [37] to name it working power and denote by Pw, thus 

p
w 1P P . 

A current proportional to the positive sequence component 
of the supply voltage fundamental harmonic u1

p uw, and 
of minimum value needed at working power Pw,  
(52)                                ,  w w wGi u
with 

(53)                               w
w 2

w|| ||
PG

u
,  

was called in [37] a working current. The remaining part of 
the supply current  
(54)                                ,  w d−i i i
does not contribute to working power and can be regarded 
as a detrimental current. When this current is compensa-
ted, the supply source is loaded only with symmetrical and 
sinusoidal working current. 
 Observe, that if U1

p and I1
p denote complex rms value of 

the positive sequence components of the load voltage and 
current fundamental harmonic, u1 and i1, or simply, crms  

values, Uw and Iw, of the load working voltage and currents, 
then  

(55)              
p p p
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Semi-periodic quantities 
Quantities in electric distribution systems are only appa-

rently periodic. Each event disturbs periodicity, while the 
harmonic approach to power theory is based on the assum-
ption that voltages and currents are periodic. Indeed, they 
are non-periodic. Powers, rms values and crms values of 
harmonics are not defined for such quantities. 
 Voltages and currents in distribution systems, although 
non-periodic, have specific properties. Power system gene-
rators provide almost sinusoidal voltage, so that energy to 
such system is delivered from generators only at the funda-
mental frequency. Non-periodic voltages occur mainly as a 
system response to non-periodic currents, while such cur-
rents occur due to transient or permanent disturbances of 
their periodicity. It was suggested in Ref. [28] to refer to 
such quantities as semi-periodic. 
 Energy is delivered to systems with semi-periodic quan-
tities at the fundamental frequency with period T of the 
generated voltage. This period can be detected and serve 
as a main time-frame for power properties analysis. 
 All functionals, such as rms value, ||x||, active power, P, 
or crms values of harmonics, Xn, which for periodic quanti-
ties x(t) are constant numbers, for semi-periodic quantities 
become functions of time. Calculation of all these functio-
nals includes averaging over period T, thus, they are slowly 
varying functions of time. Harmonics with varying amplitude 
and phase have to be regarded as quasi-harmonics.  
 For calculating the working current in three-wire systems 
with supply voltage without any zero sequence compo-
nents, the crms values of the fundamental quasi-harmonics 
of two voltages and two currents are needed. Its value at 
the end t of the T-long observation window is equal to 

1
1

2( ) ( )
t

j t

t T

t x t eTX ω−

−

= ∫ dt . 

This value at instant t = kTs in the observation window, 
shown in Fig. 14, with N equidistant samples xn, 

 
Fig. 14. Observation window 

can be calculated using DFT, namely 
2

1
1

2
n = k j nN

k n
n=k N+

x eNX
π−

−
= ∑ . 

The amount of calculation, for the last formula requires 2N 
multiplications, using recursive formula [22],  

(56)                   ,  1 1 1 ( )k k k k Nx xX X W− −= + − k

with terms  
22 j kN

k eNW
π−

, 

stored in a look-up table, can be reduced to only two multi-
plications.  

Observe that the CPC approach as applied to compen-
sation is not a pure frequency-domain approach. Although 
the working current is calculated in the frequency–domain, 



the detrimental current is specified in a time-domain. Thus it 
is a frequency/time-, or a hybrid-domain approach. 

Conclusions 
 Readers of this paper, written as a guide over the CPC-
concept, can easily conclude that all what was presented is 
a sort of scaffolding for a full fledged power theory of sys-
tems with nonsinusoidal voltages and currents, which is still 
under development. Some issues, such as four-wire and 
multi-phase systems were not even touched. The CPC 
concept was not popular, for apparent reasons, explained 
above, as a fundamental for switching compensator control, 
thus a number of application oriented issues are still waiting 
for investigations. In spite of all these still open questions, it 
seems that there is currently no more powerful tool than the 
CPC concept that could handle both cognitive and practical 
issues of systems with nonsinusoidal voltages and currents. 
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