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Abstract—The Instantaneous Reactive Power (IRP) p-q 
Theory is one of the major theoretical tools for the development 
of algorithms for generating reference signals for control of 
switching compensators, commonly known as active harmonic or 
power filters. This paper presents results of study on how the 
supply voltage harmonics affect the reference signal which is 
generated using the IRP approach.  

According to this approach, the compensator should com-
pensate, apart from the instantaneous reactive power, also the 
alternating component of the instantaneous active power of the 
load. The paper demonstrates, however, that in the presence of 
the supply voltage harmonics, an ideal, unity power factor load 
has an instantaneous active power with a non-zero alternating 
component. According to IRP based approach, it should be 
compensated and this requires that a distorted current be 
injected into the distribution system. Thus, the conclusion of the 
IRP p-q theory, that the instantaneous active power of ideally 
compensated loads should be constant is not generally true.  

The Currents’ Physical Components (CPC) Power Theory is 
the main theoretical tool for the presented analysis.  

Index Terms - Active harmonic filters, active power filters, 
harmonic suppression, instantaneous reactive power, currents’ 
physical components; CPC. 

I. INTRODUCTION 

The Instantaneous Reactive Power (IRP) p-q Theory, 
developed by Nabae, Akagi and Kanazawa [1] in 1984, is one 
of the common theoretical tools [3, 11] for generating refe-
rence signals for the control of active harmonic filters.  

There is a huge literature, in the order of a few hundred 
papers, on the IRP p-q theory, its fundamentals, physical 
interpretations, generalizations, relation to other power 
theories and implementations for filter control and so on. In 
this vast area of the p-q related issues, this paper is focused 
only on a single one, namely, on the question “how the supply 
voltage harmonics affect the reference signal for a filter 
control, when this signal is generated using the p-q theory.” 
This is an important practical issue because harmonic filters 
operate always at some level of the supply voltage harmonics 
contents. 

Although this is not the main issue, a Reader should 
observe, that the name of these devices is not well established. 
Apart from “active harmonic filters,” they are called “active 
power filters,” or “power conditioners.” Moreover, the main 
features of such devices are not characterized by these names. 
These are not active, but passive devices in the sense, that they 
are not sources of energy, but dissipate it. Their operation is 
not based on filtering, but on compensation of the undesirable 
component of the supply current by a current shaped by a fast-
switched PWM inverter and injected into the supply system. 

These are compensators, not filters. Because switching is their 
main feature that distinguishes them from reactive compen-
sators, they will be called switching compensators in this 
paper, although, perhaps a better name might be coined. 
Anyway, a discussion on selection of a proper name for these 
devices is desirable.  

The correctness of the IRP p-q as the power theory was 
challenged in Refs. [8] and [10]. It was shown there that it 
does not have properties as claimed in Ref. [3]. In particular, it 
cannot identify power properties of the load instantaneously. 
Moreover, any physical phenomenon that can be described in 
terms of the instantaneous reactive power q is not known. Just 
opposite, it was proven in Ref. [10] that this power, even in 
systems with sinusoidal voltages and currents, is an intricate 
quantity, associated with two power phenomena and conse-
quently, with two different powers, the reactive Q and the 
unbalanced D powers. It is equal to 

 1sin (2 )q Q D tω ψ= − − + ,      (1) 

where ψ denotes [13] the phase angle of the load unbalanced 
admittance, A.  

Thus, a question occurs: can IRP p-q, being not founded 
on physical phenomena in electrical systems, provide reliable 
fundamentals for such systems compensation?  

Implementations of the IRP p-q theory for compensation 
of three-phase, three-wire systems, stem from the conclusion, 
repeated in a large number of papers on compensation, to 
mention a few, such as [15-17], that the compensator should 
compensate the instantaneous reactive power, q, and the oscil-
lating component of the instantaneous active power, , which 
can be extracted from the active power p with a high pass 
filter. Indeed, according to Ref. [16], “…the original p-q 
theory authors impose a constant source power as a compen-
sation objective.” the instantaneous active power after 
compensation should be constant. This common practice in 
using p-q theory for compensation is illustrated in Fig. 1.  
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Figure 1. Compensation principle according to IRP p-q theory 
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It seems that there exists an awareness in the electrical 
engineering community involved in compensation under non-
sinusoidal conditions that the IRP p-q based approach is not 
fully satisfactory. It was expressed in Ref. [19]: “…there are 
recognized limitations to this method including demonstrated 
poor performance in the presence of unbalance ad voltage 
distortion…” Consequently, other approaches have been 
developed. The Synchronous Reference Frame (SRF) algo-
rithm [2, 9] is one of them. There are also algorithms that stem 
from the Fryze’s power theory [6]. The FDB method [4, 7] is 
one of such algorithms. Recently, the Currents’ Physical Com-
ponents (CPC ) − based power theory is used as a fundamental 
for switching compensator control [5, 12] These algorithms 
were developed without clear explanation, however, why the 
IRP p-q based approach may not fulfill expectations. 

The very nature of the instantaneous reactive power q, 
described by relation (1), was revealed using the Currents’ 
Physical Components (CPC) − based power theory, and that 
theory, along with symbols used in the CPC provide a theo-
retical frame for analysis in this paper. 

II. ASSUMPTIONS, SYMBOLS AND COMPENSATION 
FUNDAMENTALS 

The study in this paper applies to a SSC for a three-phase, 
three-wire system of the common structure shown in Fig. 2. 
The SSC should reproduce the reference signal, generated by 
Digital System Processing (DSP) system, as the compensator 
line current, j. This signal is reproduced, of course, with an 
error, dependent on the PWM inverter switching strategy and 
frequency, inverter DC bus voltage variation, the effec-
tiveness of the high frequency noise filtering, the accuracy of 
the data acquisition as well as the DSP accuracy. This error is 
irrelevant, however, for the subject of study in this paper. 
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Figure 2. Shunt switching compensator (SSC) structure 

Therefore, it is assumed that the compensator is ideal in the 
sense that it is lossless and reproduces reference signals 
without error. Because of energy dissipation in the PWM 
inverter, inductors and the capacitor, the reference signals for 
the SSC control has to contain an active current. It is not 
needed, however, at the assumption that the device is lossless. 
At such an assumption the reference signal becomes indepen-
dent of the compensator. 

Structural complexity of three-phase systems, superimpo-
sed on a mathematical complexity of description of nonsinu-
soidal voltages and currents in terms of Fourier series, can 
cause the analysis of such systems to lead to mathematically 

complex results, being difficult for interpretation and compre-
hension. Therefore, a set of effective symbols that would 
enable us to present the results of such an analysis in a simple 
form is needed. Just such a set of symbols was introduced in 
the CPC power theory [13], but some additional symbols are 
needed for the study in this paper. They are introduced below.  

The line currents iR, iS, iT and line-to-ground voltages uR, 
uS, uT are arranged into three-phase vectors 
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Line currents and line-to-ground voltages in three-phase, 
three-wire system satisfy relations  

 iR + iS + iT ≡ 0,                  uR + uS + uT ≡ 0, (3) 

thus, one line current and one voltage are dependent on the 
remaining two. Consequently, there is no need for using three 
line currents and three line-to-ground voltages for three-wire 
system analysis, but only two, arranged into reduced three-
phase vectors 
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Power properties of electric loads are described with the 
Instantaneous Reactive Power p-q theory in terms of voltages 
and currents in Clarke coordinates, α, β, 0, meaning in terms 
of three orthogonal currents iα, iβ, i0. Currents in Clarke’s 
coordinates can be expressed in terms of line currents with the 
Clarke Transform, which has the form 
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Current i0 in three-wire systems has zero value and the current 
of line T is iT  = − iR − iS, thus, the system can be described in 
terms of the reduced vector of Clarke’s current as follows 
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Similarly defined is the reduced vector of Clarke’s voltage 
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The reduced inverted Clarke Transform matrix is equal to 
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The unwanted component, ib, of the load current can be 
eliminated by a SSC from the supply current, i’, on the condi-
tion that the compensator input current,  j, is equal to − ib, i.e. 

 j  = −  ib. (9) 



The switches of the PWM inverter should be controlled such 
that the SSC input current, j, approximates the negative value 
of the unwanted component of the load current, − ib, as accu-
rately as possible. Thus, the signal proportional to − ib, calcu-
lated by the digital signal processing (DSP) system, is the 
reference signal for the SSC control.  

According to the IRP p-q theory [1, 3], the load properties 
are specified in terms of two instantaneous powers, active p 
and reactive q, defined as 
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 p u i u iα α β= + β , (10) 
 q u i u iα β β α= − , (11) 

which can be written in the matrix form 
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This equation, when solved with respect to Clarke’s currents 
iα, iβ, has the form  
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According to numerous papers that implement the IRP p-q 
theory for compensator control, to mention a few, such as [15-
17], the load is entirely compensated, if the alternating comp-
nent, , of the instantaneous power p and the instantaneous 
reactive power q are compensated, meaning that the instanta-
neous powers at the compensator terminals should be, as 
shown in Fig. 1, −  and – q. Consequently, the compensator 
current in Clarke’s coordinates should be equal to 
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Thus, after instantaneous powers  and q of the load are cal-
culated, the reference signal for the compensator current 

p
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can be obtained. 

III. REFERENCE SIGNAL AT DISTORTED LOAD CURRENT  
AND SINUSOIDAL SUPPLY VOLTAGE 

Let us start with the calculation of the reference signal for 
a SSC connected at the terminals of a balanced, purely resis-
tive harmonic generating load (HGL), assuming that the distri-
bution voltage is sinusoidal, of positive sequence, with the line 
voltage at terminal R equal to 

 R 12 cosu U tω . (16) 

The reduced vector of Clarke’s voltages is equal to 
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Since the Clarke Transform is a linear operation, it is 
enough to investigate the process of generation of the refe-
rence signal for compensation of a single current harmonic, to 

conclude how the IRP p-q theory-based algorithm handles any 
distortion of the load current. 

Let us assume, that the load current contains, apart from 
the active current, a 5th order symmetrical harmonic, meaning 
the harmonic of negative sequence, 

 a 5= +i i i , (18) 

and assume that the line R current is 
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The instantaneous active and reactive powers p and q are, 
respectively equal to 

    5 13 cos6p u i u i P UIα α β β tω= + = +  (21) 

 5 13 sin 6q u i u i UIα β β α tω= − = − . (22) 

The reference signal and consequently, the compensator 
current in Clarke’s coordinates is 
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and in phase coordinates 
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Thus, the compensator indeed injects the 5th order harmonic 
current into the supply lines, the current harmonic which 
compensates the 5th order harmonic of the load current.  

This detailed analysis, performed under the condition that 
the load is supplied with a sinusoidal symmetrical voltage, 
shows that the IRP p-q theory-based algorithm of reference 
signals generation provides correct results. Now, let us repeat 
this analysis in a situation where the condition of the sinu-
soidal symmetrical supply voltage is not fulfilled.  

IV. REFERENCE SIGNAL AT NONSINUSOIDAL 
SUPPLY VOLTAGE 

Now, let us investigate how the reference signal is affected 
by supply voltage harmonics. It is reasonable to “clean up” the 
load for this purpose from all other causes of power factor 
degradation. Therefore, it is assumed that the load is purely 
resistive, linear and balanced, as shown in Fig. 3, while the 



supply voltage is symmetrical, but distorted with the fifth 
order harmonic 
 , (25) 1 5= +u u u

assuming for the sake of simplicity that  
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Figure 3. Balanced resistive load with compensator 

The 5th order harmonic has the opposite sequence than the 
sequence of the fundamental harmonic, thus the reduced vec-
tor of Clarke’s voltages is equal to 

1 1 5 1

1 5

R
C 0 0

S 1 1

cos cos 5
2

cos( 120 ) + cos(5 120 )

U t U tu u
u u U t U t

α

β

ω ω

ω ω

+⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥

− +⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
u C C =  

 1 5

1 5

1 1

1 1

cos + cos 5
3

sin sin 5
U t U
U t U t

ω ω
ω ω

⎡
= ⎢ −⎣ ⎦

t⎤
⎥ . (27) 

 
For the load considered 

 , (28) 1 5G G G= +i = u u u

thus, the reduced vector of Clarke’s load currents is 
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The instantaneous active power of the load at such supply is  
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Thus, the instantaneous active power p of balanced resistive 
loads supplied with a voltage distorted with the 5th − order 
harmonic is not constant, but changes around its mean value. 
The alternating component of the instantaneous power is 

 1 5 16 cos 6p GU U tω= . (31) 

The instantaneous reactive power q is equal to zero. 
The alternating component of the instantaneous active 

power p is non-zero, thus, according to the IRP p-q theory-
based approach, the reference signal in Clarke’s coordinates is 
given by 
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This formula shows that the compensator has to inject a 
distorted current into the system to compensate the alterna-
ting component  of the instantaneous active power. Taking 
into account that the denominator in formula (33) is equal to  
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meaning, it changes in time, the distortion of the compensator 
current is very complex. This current in phase coordinates is 
equal to 
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It means that the compensator, controlled according to the 
IRP p-q theory, in the presence of supply voltage harmonics 
“attempts” to compensate even an ideal, resistive, unity power 
factor load. To do this the compensator injects a distorted cur-
rent into the supply system.  

One can say that installation of a compensator at termi-
nals of such an ideal load has no sense. It is true. The load 
considered in this Section normally is not a subject of com-
pensation. Operation of a compensator with such a purified 
load was analyzed in this Section only to avoid situation 
where the current given by Eqn. (35) is hidden among other 
components of the compensator current. 

This current is injected into the system because the 
instantaneous active power p of the load in the situation des-
cribed in this Section has a non-zero alternating component 
and according to the IRP p-q approach, the compensator 
should eliminate such a component. One could ask a ques-
tion, however, “does this component occur because of the IRP 
p-q theory properties, or does the instantaneous power p at 
distorted supply voltage indeed have such a component?” 

 To answer this question let us calculate the instantaneous 
active power, or simply, the instantaneous power p(t), in such 
a situation without Clarke’s Transform. For such a balanced 
load with the phase conductance G, supplied with a symmetri-
cal voltage with fifth order harmonic, the instantaneous power, 
i.e., the rate of energy W flow between the load and the supply 
source is 
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The first two terms are constant components of the instant-
aneous power 
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where P1 and P5 are harmonic active powers of the funda-
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Consequently, the instantaneous power of the load is 

1 5( ) dWp t P Pdt= = + + 1 5 16 cos6GU U tω .           (40) 

Thus, the alternating component occurs in the instantaneous 
active power p not because of some properties of the IRP p-q 
theory. This is the power property of a load when supplied 
with distorted voltage. The same was concluded in Ref. [14] 
using the FDB method. Consequently, only the conclusion, 
which is very common in papers on compensation namely, 
that the alternating component of the instantaneous active 
power should be compensated, is not right when the supply 
voltage is distorted with harmonics. This alternating compo-
nent can occur in the instantaneous power even for ideal, 
resistive, unity power factor loads.  

There are reported observations [18, 19] that the p-q 
theory-based control algorithm works properly only at sinu-
soidal voltage. Unfortunately, a great majority of papers on 
the p-q theory-based compensation assumes that the zero 
reactive and constant instantaneous active power is the goal of 
compensation.  

Even if the condition for sinusoidal supply voltage at p-q 
approach is articulated in some papers, a due reason is not 
clearly provided. This paper provides very detailed reasons for 
that condition. 

V. CONCLUSIONS 

The Instantaneous Reactive Power p-q theory, used as a 
fundamental for an algorithm for generating reference signals 
for switching compensator control, does not provide correct 
results when the load is supplied from a source of nonsinu-
soidal voltage. When this voltage is distorted by harmonics, 
then the reference signal and consequently, the compensator 
current contain a disturbing component.  

This disturbing component is generated by the IRP p-q 
theory − based control algorithm, because this algorithm relies 
on a believe that the instantaneous active power p of a load 
after compensation should be constant, meaning without any 
alternating component. This conclusion is not true, however, 
when the supply voltage is distorted. An alternating compo-
nent can occur in the instantaneous power even for ideal, unity 
power factor loads.  
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