
 1

IEEE Transactions on Power Delivery, April 2004, Vol. 19, pp. 846-853 

Effects of Damping  
On the Performance of Resonant Harmonic Filters  

Leszek S. Czarnecki, Fellow, IEEE and Herbert L. Ginn III, Member, IEEE  

 
Abstract: The effectiveness of resonant harmonic filters (RHFs) in 
harmonic suppression is the resultant of two different types of resonance 
that affect the filters’ effectiveness in an opposite manner. They are the 
resonance of the filter branches and the resonance of the entire filter 
with the distribution system inductance. Damping these resonances by 
reduction of the filter Q-factor affects the filter performance in a 
complex way. There are suggestions in the literature on RHFs that such a 
damping would improve the filter effectiveness. Unfortunately, no 
quantitative information to support such a suggestion is available.  

This paper presents the results from a study of the effect of the Q-
factor on the filter effectiveness and on the loss of active power in the 
filter.  
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I.  INTRODUCTION 

In spite of the development and availability of active power 
filters for harmonic suppression, passive harmonic filters (PHFs) of 
various structures are still the main devices installed in distribution 
systems for reducing harmonic distortion. Although the technology 
of PHFs is a few decades old, there are still some open or contro-
versial issues. Some of them are very complex, like the issue of 
localization of PHFs in a distribution system to optimize the system 
performance. Some of them are almost elementary. The question: 
“how does the quality factor, q = ωL/R, of the filter inductors effect 
the filter performance,” is just such an elementary issue.  

Nonetheless, the opinions on the effect of the Q-factor on 
effectiveness of the basic PHFs, it means, resonant harmonic filters 
(RHFs), are divided. According to Ref. [1], the Q-factor should be 
kept as high as possible, but a resistor that reduces the Q-factor 
should be added to the branch tuned to the 5th order harmonic when a 
resonance near the 4th harmonic frequency, namely in the band of 
(3.85-4.15)ω1, cannot be avoided. However, in order to damp the 
harmful resonances, connection of an additional resistor is 
recommended in Ref. [2]. According to Ref. [3] the filter “resistance  
has a minor effect on harmonic attenuation”. With such information, 
not supported with a quantitative analysis, the filter designer might 
be confused. What would be the desirable level of the Q-factor?  

The reason for this controversy is the fact that harmonics other 
than those the filter is tuned to, considered as minor, are sometimes 
[3, 4] neglected in the process of filter design. Under such an 
assumption, the filter effectiveness increases with the inductor Q-
factor increase without any doubts. However, some authors who 
discuss the design of filters and their performance based on 
measurements rather than on assumptions or simplifications, report 
[5-8] amplification of some minor harmonics rather than their 
attenuation by the filter. Indeed, it has been shown [9] that minor 
harmonics may contribute formidably to the reduction of the filter 
effectiveness. Amplification of these minor harmonics declines with 
the Q-factor decline and consequently, reduction in the Q-factor 
contributes to filter effectiveness increase. However, the resultant 
effect is difficult to predict without quantitative analysis. 

The investigation of the impact of resonance damping on the 
effectiveness of RHFs and the power loss is the subject of this paper. 
It is easy to predict that no explicit results could be obtained for this 
kind  of  problem. It depends  on the magnitude  of minor harmonics, 
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their origin and spectrum. Detailed results also depend on the system, 
the load and the filter parameters. This paper provides only a 
quantitative insight into the impact of resonance damping on the 
filter effectiveness and illustrates it with a simple case study. It may 
help the Reader to predict damping effects in other situations.  

II. FUNDAMENTALS 
Resonant harmonic filters (RHFs), installed at supply terminals 

of distribution systems, form a low impedance path for current 
harmonics generated in non-linear or time-variant loads, referred to 
as harmonic generating loads (HGLs), thus protecting the system 
against the injection of these harmonics. Such filters are built of a 
few LC branches tuned to different frequencies. Although other filter 
structures are also used, this is the structure used [10] most often.  

The resistance, inductance and capacitance of a filter branch 
tuned to the frequency ω = zn = 2πfn are denoted in this paper by Rn, 
Ln and Cn. Since Q is used as the symbol for reactive power, the Q-
factor of a branch at the tuning frequency, ω = zn, is denoted by qn in 
this paper. It is equal to qn = znLn/Rn. According to Ref. [10], for high 
voltage applications where air-core inductors are used the Q-factors 
of 50 < q < 150 are typical while for low voltage applications iron-
core inductors are needed with 10 < q < 50. The Q-factor of air-core 
inductors increases linearily with frequency.  

The effectiveness of a filter branch in the protection of the 
system against the injection of a current harmonic to which the 
branch is tuned increases with reduction of the filter resistance Rn 
thus, with the filter branch Q-factor increase. Unfortunately, the 
conclusion that effectiveness of the filter increases as well, is correct 
only as long as there are no harmonics other than the load current 
harmonics to which the filter is tuned.  

Harmonic generating loads usually also generate current 
harmonics other than those the filter is tuned to. Moreover, there are 
harmonics in the distribution voltage. These harmonics, considered 
as minor, often are neglected when the filter is designed.  

The impedance of RHFs is capacitive in a band below each 
tuning frequency. Consequently, a resonance of the filter with the 
inductance of the distribution system has to occur in such a band. 
The number of these resonances is equal to the number of branches.  

As seen from the distribution system, these resonances are series 
or voltage resonances, thus the impedance from the supply side at 
such resonances has a minimum value. It increases the supply current 
harmonics, in, caused by distribution voltage harmonics, en, of the 
frequency in a vicinity of the resonant frequency. Moreover, the 
voltage resonance amplifies the bus voltage harmonics, un, in a 
vicinity of the resonant frequency.  

As seen from the load, these resonances are parallel or current 
resonances, thus the impedance from the source of the load generated 
harmonics, Zy, at the resonant frequency has a maximum value. It 
increases the load voltage harmonics, un, caused by the load 
generated current harmonics. Moreover, this resonance amplifies the 
supply current harmonics, in. 

These four effects, caused by the resonance of the filter with 
distribution system inductance, contribute to an increase in the 
voltage and current distortion and thus they reduce the filter effect-
tiveness. The filter Q-factor increase makes these harmful resonances 
and these four effects more pronounced. Thus, the filter effectiveness 
in the presence of minor harmonics could decline with the Q-factor 
increase.  

mailto:czarneck@ece.lsu.edu
mailto:ginn@ece.msstate.edu


III. THE LOWEST RESONANT FREQUENCY 
The equivalent circuit, per phase, of a distribution system, a 

harmonic generating load and a resonant harmonic filter composed 
of N-resonant branches has the form shown in Fig. 1. Symbols En, Jn, 
Un and In stand for the complex RMS (CRMS) value of harmonics of 
the distribution voltage e(t), the load generated current j(t) the load 
voltage, u(t), and the supply current, i(t), respectively.  
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Fig. 1. Equivalent circuit  
Symbol Yxn stands for the admittance as seen from the distribution 
system for the nth order harmonic and the symbol Zyn stands for the 
impedance as seen from the source of load current harmonics. 
Moreover, let U(jω), E(jω), I(jω) and J(jω) denote the Fourier 
transforms of the load and distribution voltage, u(t) and e(t), the 
supply and generated currents, i(t) and j(t), respectively.  

At tuning frequencies, ω = zn, the branch impedance approaches 
its minimum, which for a lossless filter equals to zero. The resonance 
with the distribution system occurs at the frequency, where the impe-
dance as seen from the distribution system, Zx(jω), has a minimum 
value. The system transmittances 

( )( ) ( )
U jA j E j

ωω ω= ,          ( )( ) ( )
I jB j J j

ωω ω= ,                  (1) 

at such resonant frequency approach a maximum. For a lossless filter 
these transmittances approach infinity Frequencies of such resonan-
ces, ω = pk, are referred to as poles.  

Let Ya(jω) be the equivalent admittance of the RHF and the load, 
and Zs(jω) is the distribution system impedance, namely 

a a a L
1

( ) ( )+ ( ) ( ) ( )
N

n
n

Y j G jB Y j Y jω ω ω ω
=

= = + ∑ ω ,                 (2) 

s s s( ) ( ) ( )Z j R jXω ω= + ω ,                               (3) 
then, the system transmittances can be expressed as   

a s( ) ( ) 1 [1 ( ) ( )]A j B j / Y j Z jω ω ω= = + ω .                  (4) 
Case #1. Magnitudes of transmittances A(jω) and B(jω) calculated 
for three values of the Q-factor equal to q = 100, 30 and 10 are 
shown in Fig. 2. The plots are for a system with the load active 
power P = 50 kW at U = 480 V and PF of λ  = 0.71, with two branch 
filter tuned to frequency 4.8ω1 and 6.8 ω1, installed on a bus with the 
short circuit power Ssc = 2.0 MVA and Xs/Rs = 5.  

  
Fig. 2. Magnitues of transmittances A(jω) and B(jω) 

Figure 2 demonstrates the very explicit effect of the Q-factor on 
damping harmful resonances, and consequently, on the reduction of 
harmonic amplification. An increase of transmittances A(jω) and 
B(jω) at tuning frequencies with the Q-factor reduction is less visible 
but this can have substantial adverse impact on the filter effective-

eness. The frequency of the harmful resonances for the parameters 
assumed in Illustration 1 are above the frequency of the 4th and very 
close to the 6th order harmonics. However, some changes in the sys-
tem parameters or filter detuning, a tolerance of filter LC parameters 
or their change with temperature may cause these resonances to 
occur much closer to or at harmonic frequencies. 

Undamped resonances are resonances in the system with conduc-
tance Ga(ω) = 0 and resistance Rs(ω) = 0 and consequently, transmit-
tances A(jω) and B(jω) at such resonances approach infinity. They 
occur at frequencies, ω = pk, where 

Ya(jpk) Zs(jpk) = - BBa(pk) Xs(pk) = - 1.                      (5) 
Unfortunately, the formula for calculating this frequency has a 
simple form only for single branch filters. In such a case, if the filter 
is tuned to frequency ω = z1, then the harmful resonance with the 
distribution system occurs at the frequency, ω  = p1, equal to 

s L
1 1

s L 1

1 /
1 (1/ 1/ )

L Lp z L L L
+

= + + .                                (6) 

Usually Ls<<LL thus, this formula could be simplified to 
1

1
s 11 /

zp
L L

=
+

.                                          (7) 

There are two harmful resonant frequencies, p1 and p2, for a two-
branch filter. The formulae for calculating these frequencies are too 
complex, however, to have a practical meaning. The same is with 
higher number of branches. Numerical methods are needed.  

Of all the resonances of the filter with distribution system, the 
lowest one is usually the most harmful, since its frequency may 
coincide with the frequency of the 3rd or the 4th order harmonics 
which usually have a higher value than other minor harmonics, such 
as the 6th, 8th or the 9th order. Also, as can be observed in Fig. 2, the 
lowest resonance is usually less damped than resonances at higher 
frequencies. Therefore, a formula for the resonant frequency, p1, of 
the lowest harmful resonance would be desirable, even if it could 
provide only an approximate value of this frequency. 

The first harmful resonance occurs below the lowest tuning 
frequency, z1, that means at a frequency where the branch tuned to 
frequency, z1, has much lower impedance than the remaining ones. 
Thus, the parameters of other branches could be neglected in the 
approximate formula for the first harmful resonance frequency, p1. 

If the filter branch, tuned to frequency z1 compensates the reac-
tive power equal to a1Q, where a1 denotes a reactive power 
allocation coefficient, then the branch should have the capacitance 

21
1 1 1 1 02 11 1

[1 - ( ) ]Q QC a a a CzU U
ω

ω ω
= ≈ 2 = ,                   (8) 

where C0 denotes the capacitance of a compensator needed for the 
power factor improvement to unity.  

0 2
1 1

tanQ PC
U U 2

ϕ
ω ω

= = .                                    (9) 

The inductance of a branch is approximately equal to 
2

1 1 11 ( )0L = / a z C .                                    (10) 
If the resistance of the distribution system, which is usually much 
lower than its reactance, is neglected, then its equivalent inductance 
can be found from the formula 

2 2

s
1 sc 1 sc

E UL Sω ω= ≈ S .                             (11) 

Thus, taking into account formulae (9-11), formula (7) provides 
approximate value of the frequency of the lowest resonance 

1
1

2
1 1 1

sc
1 ( ) tan

zp
Pa z / Sω ϕ

=
+

.                         (12) 

This formula for the system with parameters as assumed in Case #1 
results in the resonant frequency of the lowest resonance p1= 4.3 z1. 



 3

The system and filter parameters are not usually known with 
accuracy higher than 5-10%, thus it is difficult to expect that the 
resonant frequency could be calculated with high accuracy.  

Formula (12) provides some information on how the resonant 
frequency could be controlled during the process of filter design. 
Filter detuning, i.e., a change of the z1 with respect to harmonic 
frequency, kω1, provides only very limited control of the resonant 
frequency, because this detuning usually cannot be greater than only 
a few percent. It should be observed, that detuning may shift the 
resonant frequency, p1 toward a harmonic frequency. For example, 
detuning the 5th order branch to z1 = 4.7ω1, would move the resonant 
frequency towards the 4th order harmonic frequency.  

The coefficient, a1, of the reactive power allocation provides a 
real tool for such a control. Unfortunately, any change in the distri-
bution system that affects its inductance, Ls, may invalidate such a 
control. 

IV. MAXIMUM HARMONIC AMPLIFICATION 

Harmful resonances are damped by the resistance of the load, the 
resistance of the distribution system as observed at the bus where the 
filter is installed and by the resistance of the filter branches. 
Unfortunately, these resistances depend on frequency and their 
values are not easily available for the filter designer. Therefore, only 
a rough assessment of these resistances and the filter damping is 
possible. Such an assessment is presented below. 

Distribution system resistance Rs and non zero conductance Ga of 
the filter and the load reduce the system transmittances, specified 
with formula (5), at resonant frequencies A(jpk) and B(jpk) from 
infinity to  

a s a s s a

1( ) ( ) + ( )k kA jp B jp G R j G X B= = + ,                (13) 

where parameters Ga, Rs, Xs and BBa are specified at resonant 
frequency, pk. Usually Rs << Xs, thus, the real part of the 
denominator, GaRs, in the formula (13) can be neglected. Moreover, 
the equivalent conductance, Ga, is the sum of the filter conductance, 
GF and the load conductance, GL. Thus, the magnitude of 
transmittances A(jpk) and B(jpk ), denoted as Ap and BpB , can be 
approximated as  

p p
s a L s F s

1A B R B G X G X= ≈ + + .                  (14) 

The formula (14) can be rearranged as 

p p p0
L F

1
1A B A d d= ≈ + + ,       p0 p0

s a

1A B R B= = .          (15) 

The symbol Ap0 denotes harmonic amplification at a resonant 
frequency in the lack of resonance damping by the load and the filter 
resistance, i.e., when GF = 0 and GL = 0. The term Ap0 = BBp0 specifies 
maximum harmonic amplification possible at the bus when the load 
is purely reactive and the filter has an infinite Q-factor. The 
coefficient 

L
L s s

a s
              =Gd , sX

B Rξ ξ= ,                       (16) 

specifies a coefficient of resonance damping due to the load 
resistance, while the coefficient 

F
F

a

Gd B sξ= ,                                   (17) 

is a coefficient of resonance damping due to the filter resistance. 
The maximum possible harmonic amplification Ap0 at a resonant 

frequency depends on the equivalent resistance of the distribution 
system Rs at frequency pk. For a rough approximation, it can be 
assumed that its value is the same as for the fundamental harmonic 
and can be calculated from the formula   

2

s 2
sc s1

UR
S ξ

≈
+

,                                 (18) 

The  susceptance B

Ba = BBF + BLB ,                                       (19) 
and their values have to be analyzed separately. The load suscep-
tance at frequency ω = pk  is equal to 

L 2 2L

1 tan
1 tan

k

k
B R

Ω ϕ
Ω ϕ

= −
+

.                              (20) 

where RL = U2λ2/P,  ϕ = cos-1(λ) and Ωk = pk/ω1. For pk >>  ω1 and 
common values of the power factor λ, the load susceptance is 

L 2 2L

1 1
tan 1k k

PB R UΩ ϕ Ω λ λ
= − = −

−
.                 (21) 

thus, its magnitude declines monotonically with the increase of the 
relative resonant frequency Ωk = pk/ω1.  

The filter susceptance, BBF, at resonant frequency, pk, is equal to 
the sum of the branch susceptances, BnB . The effect of the branch 
resistance, Rn, on the branch susceptance is usually negligible, thus 
the filter susceptance can be approximated as 

F 2 2
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n N n N n N
k n k n

n
k n n k nn n n

p C p CB B
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= = =
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If the n-branch of the filter compensates the reactive power anQ 
and the filter is tuned to frequency zn, then  

2
1 2 [1 ( ) ]n n n

QC a / z
U

ω = − 1ω .                        (23) 

Thus, taking into account formula (23), the filter susceptance at 
frequency pk can be expressed as  

2

F 2 2
1

1N
n

k n
n kn

QB a
U
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−
≈

−∑ ,      with    
1
n

n
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Case #2. This case illustrates the filter resonance without damping 
by the load, i.e., in a system with a purely reactive load. The filter, 
installed at a bus with the short circuit power Ssc = 40 pu and Xs/Rs = 
5, is tuned to 4.7ω1 and 6.7 ω1. The resonant frequencies are approxi-
mately equal to p1 = 4.05 ω1 and p2 = 5.9 ω1. The load resistance, 
calculated from formula (18), is equal to Rs = 0.0065 pu. The load 
and the filter susceptance are compiled in Table 1. The amplification 
at resonant frequencies at the lack of damping by the load and the 
filter resistance at frequency p1 = 4.05 ω1, according to formula (17), 
is equal to Ap0 = 19 and at frequency p2 = 5.9 ω1 it is equal to Ap0 = 
29. These amplifications obtained from the system model are 20 and 
28, respectively. 

Table 1. Load and filter susceptances  
pk rd/s 4.05 ω1 5.9 ω1

BBL pu - 0.25 - 0.16 
BB1 pu 5.19 - 6.26 
BB2 pu 2.89 11.71 
BBF pu 8.08 5.43 

These results differ only by a few percent from the results obtained 
from system modeling, shown in Fig. 3.  

 
Fig. 3. Magnitude of transmittances A(jω) and B(jω) for reactive load 

The values compiled in this Table show that the load susceptance has 
relatively low effect on the maximum harmonic amplification.  Ba  is a sum of the filter  and load susceptances,  



V. RESONANCE DAMPING  

If it is assumed that equivalent resistance of the distribution 
system Rs does not change with frequency, which is only an approxi-
mation, i.e., the reactance to resistance ratio ξs =Xs/Rs increases from 
its value at the fundamental, ξs1, the load related damping coefficient, 
dL, specified with formula (16), can be expressed as follows 

s L L
L

s a a
k

 4

s1
X Gd G
R B Ω ξ= = B ,                          (25) 

where the load conductance at resonant frequency, pk, can be 
approximated by 

L
L 2 2 2 2 2

1 1 1
1 tan sink k

PG R UΩ ϕ Ω
= ≈

+ ϕ
.                (26) 

The filter related damping coefficient, dF, specified with formula 
(17) can be expressed as 

F
F s1 s1

a a 1

1 n=N

k k
n

Gd GB BΩ ξ Ω ξ
=

= = ∑ n ,                     (27) 

where the conductance at frequency pk of the filter nth-branch tuned 
to frequency zn is equal to 

2

2 2 2
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k n n
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2= ( )/ 1 ( )k n n k n n k np R C p / z q p / z<< − ,                (29) 

the conductance Gn is approximately equal to             

2
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n
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z CG qz / p p / z
≈

−
,                       (30) 

where qn is the branch Q-factor at the tuning frequency,  
n n

n
n

z Lq = R .                                      (31) 

The conductance of the filter n-branch can be expressed in terms of 
the branch reactive power. It is equal to 

1 1
2 2

1
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n n
n n

n n k k n

z / / z QG a q z / p p / z U
ω ω−

≈
−

.                   (32) 

Formulae for load and filter damping coefficients (25) and (27) 
show that the load and filter resonance damping coefficients remain 
independent on the supply short-circuit power, Ssc, which affects the 
resonant frequencies, pk. The most crucial situation occurs when the 
resonant frequency coincides with the 4th or with the 6th order harmo-
nics. Only in very weak systems with a low load power factor would 
this frequency coincide with the 3rd order harmonic. Therefore, the 
evaluation of the harmonic amplification for the 4th and 6th order 
harmonics is particularly important.  

The values of these damping coefficients along with the system 
parameters for the situation in Case 1 for two different Q-factors, the 
same for each branch, q = 100 and 30, are compiled in Table 2. 

Table 2. Load and the filter parameters at resonant frequency 

pk rd/s 4.0 ω1 6.0 ω1

GL pu 0.125 0.041 
BBL pu - 0.50 - 0.286 
BB1 pu  5.33 - 6.54 
BB2 pu 2.91 11.08 
BBa pu 7.74 4.25 
dL - 0.32 0.29 
qn - 100 30 100 30 
G1 pu 0.119 0.396 0.179 0.596 
G2 pu 0.025 0.083 0.358 1.19 
GF pu 0.144 0.479 0.537 1.79 
dF - 0.37 1.24 3.79 12.6 

The results compiled in Table 2 show that for a common level of 
the filter Q-factor, q, the load resistance has much lower contribution  

to the resonance damping than the filter resistance. Also, these 
results show that the lowest resonance is much less damped than the 
resonance at higher frequencies. This confirms the earlier conclusion, 
that the lowest resonance, as less attenuated is much more crucial for 
the filter performance than resonances at higher frequencies, 
especially since this usually relates to the 4th and the 6th order 
harmonic and the first of them is usually much larger. 

Observe that according to formulae (15, 16 and 17), both the 
maximum harmonic amplification Ap0 and the filter resonance dam-
ping coefficients depend on the susceptance, BBa. However, when  

dF >> 1+ dL,                                      (33) 
then 

p0
p

F s s1 F s

1 1
k k

A
A d R G X GΩ ξ Ω≈ = =

F
,                 (34) 

thus, it is independent of the filter and the load susceptance. 

VI. ADMITTANCE FOR DISTRIBUTION HARMONICS 
The resonance of the filter with the distribution system causes 

not only resonant amplification of the voltage and current harmonics. 
This resonance also increases the admittance as seen from the 
distribution system, defined as 

a
x

a s

( ) ( )( ) ( ) 1 ( ) ( )
I j Y jY j E j Y j Z j

ω ωω ω ω ω= = + .                    (35) 

At resonant frequencies this admittance may approach a very high 
value. If the resonant frequency coincides with the frequency of a 
distribution voltage harmonic, a large harmonic can occur in the 
supply current. Moreover, this admittance has a high value for the 
voltage harmonics to which the filter is tuned. An example of the 
plot of the magnitude of admittance Yx(jω) is shown in Fig. 4.  

 
Fig. 4. Plot of magnitude of admittance Yx(jω) versus frequency 

This plot was drawn for a system with the same parameters as in 
Case 1 and for three values of the Q-factor, namely, q = ∞ , q = 100 
and q = 30, respectively. 

In the lack of the resonance damping by the filter and load resi-
stance, the magnitude of admittance Yx(jω) at the resonant frequency, 
pk, has a maximum value, denoted by Yxp0. The resonant current is 
bounded only by the distribution system resistance, Rs, hence 

xp0 s1Y /= R .                                      (36) 
The effect of the load and the filter resistance on the resonance 

admittance, Yxp, can be evaluated, assuming that the equivalent 
conductance Gn is much lower than susceptance Bn, using a formula 
which is similar to formula (15) for the resonant harmonic 
amplification,  

xp xp0
L F

1
1Y Y d d≈ + + ,                             (37) 

where coefficients dL and dF are defined by (16) and (17). 

VII. IMPEDANCE FOR LOAD HARMONICS 

The resonant harmonic filter changes not only the supply current 
at the bus where the filter is installed, but also the impedance as seen 
from the harmonic generating load. Consequently, it affects the bus 
voltage harmonics caused by the load current harmonics. The 
impedance for these harmonics is equal to 



s
y

a s

( ) ( )( ) ( ) 1 ( ) ( )
U j Z jZ j J j Y j Z

ω ωω jω ω ω= = + .                  (38) 

This impedance, drawn for a system with the same parameters as 
in Case 1, is shown in Fig. 5. 

 
Fig. 5. Plot of magnitude of impedance Zy(jω) versus frequency 

At the resonant frequency the impedance Zy(jpk) = Zyp is equal to 
s s

yp
a s a s s a(

R jX
G R j G X R BZ +

= + +

 5

)

s

.                         (39) 

Typically, sR X<< , thus, this impedance can be approximated by 

yp yp0
L F

1
1Z Z d d≈ + + ,         s

yp0
s a a

k
XZ s1

R B B
ξΩ= = .       (40) 

The impedance Zyp0 and consequently, the bus voltage distortion 
caused by the load generated current harmonics jn increases with the 
resonance frequency increase and with increase in the reactance to 
resistance ratio ξs1. It also depends on the susceptance BBa. 

VIII. DISTORTION AND POWER LOSS 
Load generated current harmonics jn and distribution voltage 

harmonics, en, are not mutually correlated, therefore, the expected 
RMS value, In, of the supply current harmonics can be calculated as 
the root of the sum of squares of RMS values of the load and the 
supply originated harmonics,  

2
x( ) ( )n n n n nI B J Y E= + 2 ,                          (41) 

where BBn and Yxn denote the magnitudes of B(jω) and Yx(jω) for the 
n-order harmonic. The supply current distortion, δi, which is the ratio 
of the RMS value ||id|| of the distorting component of the supply 
current to the fundamental current RMS value, I1, is equal to 

2 2
2 2d x

i 2 21 1 12 2

|| || ( ) ( ) ( )+ ( )n n n n

n n

i B J Y E
i ij eI I I

δ
∞ ∞

= =

= = + =∑ ∑ δ δ ,     (42) 

where δi(j) and δi(e) are coefficients of the supply current distortion 
caused by the load generated current harmonics and the distribution 
voltage harmonics. Similarly, the bus voltage distortion is equal to 

22
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( )|| || ( ) ( )+ ( )n nn n
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Z Ju A E e jU U U
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where ||ud|| is the RMS value of the distorting component of the bus 
voltage; An and Zyn denote the magnitudes of A(jω) and Zy(jω) for the 
n-order harmonic and δu(e) and δu(j) denote coefficients of the bus 
voltage distortion caused by the distribution voltage harmonics and 
by the load generated current harmonics, respectively. 

The idea of reducing the voltage and current distortion due to the 
filter resonance by its damping is an old one. It was sug-gested by 
Steeper and Stradford, [1], as well as being reported in Ref. [2] by 
Merhaj and Nichols.  

Reduction of the Q-factor, reduces the magnitude of transmit-
tances A(jω), B(jω), Yx(jω) and Zy(jω) at resonant frequencies, pk. At 
the same time, it increases the magnitude of these transmittances at 
tuning frequencies, zk. Consequently, the reduction of the filter Q-
factor affects the suppression of minor harmonics and the harmonics 

to which the filter is tuned in an opposite way. The resultant effect 
depends on the voltage and current spectra and on the frequencies of 
the filter resonance with the distribution system. If such a resonance 
coincides with the frequency of a minor harmonic, the reduction of 
the Q-factor may reduce the waveform distortion. Otherwise, the 
distortion may increase due to lower efficiency in attenuation of 
harmonics to which the filter is tuned.  

In the case of filters of the 5th, 7th, 11th and 13th order harmonics 
the most crucial for the filter performance is a possible resonance at 
the frequency of the 4th order harmonic. This is the less attenuated 
resonance and the 4th order harmonic is usually stronger then the 6th, 
8th and other non-characteristic harmonics.   

The resonance curves, as it can be seen in Figs. 2-5, are very 
narrow. Thus, a resonance in the middle between frequencies of the 
3rd and 4th order harmonic does not magnify the 4th order harmonic in 
the supply current and the bus voltage. There is no reason to be 
concerned with such a resonance. However, a reduction in the filter 
capacitance or the distribution inductance on the order of 30 per cent 
shifts this resonance from 3.5ω1 to 4ω1. Such a shift could be caused 
by a reconfiguration in the distribution system or by disconnection of 
a section of the capacitor bank, for example, by over-current 
protection circuits. This resonance in the presence of the 4th order 
harmonic in the distribution voltage or in the load current, even well 
below 1 per cent, may cause drastic increase of the bus voltage and 
the supply current distortion. Such distortion, even over a very short 
time, could disturb control systems of industrial processes. 
Therefore, the possibility of such distortion, its magnitude and means 
of prevention could be a matter of concern. The coincidence of the 
resonance at the 4th and 6th order harmonic, although possible is not 
probable. Also, this could be prevented at the filter design level.  

Variation of particular components of the bus voltage and the 
supply current distortion, δi(e), δi(j), δu(e) and δu(j), with the Q-
Factor, q, in the situation of Case 1, in the presence of only the 4th 
order harmonic in the distribution voltage, with E4 = 0.5 %, is shown 
in Fig. 6. The load generated current does not contain any other 
harmonic but only J5 = 18% and J7 = 11% of the current fundamental 
harmonic.  

The level of 1.0 in Fig. 6 is the level of maximum values of 
particular distortion coefficients in the Q-factor variation range of 
(10-100). These maxima are equal to  

δi(e) = 49.7%,   δi(j) = 8.8%,   δu(e) = 5.7%,   δu(j) = 1.3%. 
The distortion caused by the load generated characteristic 5th and 7th  
order harmonics and the distribution voltage 4th order harmonics 
change with the Q-Factor in an opposite way, thus the respective 
maxima are at the opposite ends of the range of the Q-Factor 
variation. Distortion caused by the supply voltage 4th order harmonic 

 
Fig. 6. Partial distortion coefficients versus Q-Factor, q 

is much higher than that caused by the load current. Thus, the mini-
mum resultant voltage and current distortion, calculated according to 
formulae (42) and (43) occurs at the lower end of the Q-Factor 
variation range, i.e., at q = 10. It is approximately equal to 

2 2
i (0 3 49 7) 8 8 17 3. . . .δ ×≈ + = % ,  



2 2
u (0 3 5 7) 1 3 2 1. . . . %δ ×≈ + = . 

In the case considered, the 4th order distribution voltage 
harmonic, e4, is the major cause of waveform distortion. Observe, 
that the IEEE Standard 519 accepts only 25% of the even order 
harmonics in the bus voltage. Thus, even at the minimum value of 
voltage distortion, the contents of the 4th harmonic in the bus voltage, 
equal to 0.3 x 5.7 = 1.7%, exceeds this level.  

Reduction in the Q-Factor of the filter branches is accompanied 
with an increase in the active power loss, ΔPF, in the filter. The 
change of this power loss with the Q-Factor for the Case 1, along 
with change of total distortion coefficients of the bus voltage, δu and 
supply current, δi, are shown in Fig. 7.  

 
Fig. 7. Power loss and total distortion coefficients versus Q-Factor, q 
The level of 1.0 in this Figure is the level of maximum power 

loss ΔPF = 2.0% of the load active power and maximum values of the 
total distortion coefficients in the Q-factor variation range of (10-
100), equal to δi = 50.0% and δu = 5.7%.  

The results demonstrated above show that resonant amplification 
of the 4th order harmonic could be only reduced at the cost of 
substantial reduction of the filter Q-Factor and active power loss 
increase. The presence of the 4th order harmonic in the load gene-
rated current, usually caused by an asymmetry of AC/DC converters 
or by a jitter of thyristors’ firing angle, could aggravate the problem 
of the 4th order harmonic amplification even further. The effect of 
this harmonic of the value of J4 = 1% on distortion coefficients is 
shown in Fig. 8. The maximum values in this plot are equal to 
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   ΔPF = 2.0%, δi(e) = 49.7%, δi(j) = 16.6%, δu(e) = 5.7%, δu(j) = 2.0%. 

 
Fig. 8. Power loss and partial distortion coefficients versus Q-Factor, q 

IX. CONCLUSIONS 
Both analysis of resonance damping and case investigation show 

that if resonant harmonic filters tuned to the 5th and 7th order 
harmonics are installed at the bus with the short circuit power in the 
range of 30-50 times the active power at the bus, then the most 
harmful resonance of the filter with the distribution system can occur 
in the vicinity of the 4th order harmonic. A change in the system 
short circuit power or in the filter capacitance in the range of 30% 
can cause a coincidence of this resonance with the 4th order harmonic 
and its drastic amplification. In spite of suggestions in the literature 
that such a resonance could be damped by reduction in the filter Q-
Factor, the results of the study in this paper do not confirm them. In 

order to effectively damp this resonance, the Q-Factor has to be 
reduced to such a low level, that the cost of the active power loss in 
the filter could be unacceptable. It seems that a system of detection 
of resonance conditions and a method of preventing this resonance 
from approaching the 4th order harmonic frequency would be more 
recommended than damping. 

X.  REFERENCES 

[1] D.E. Steeper and R.P. Stratford, “Reactive compensation and harmonic 
suppression for industrial power systems using thyristor converters”, 
IEEE Trans. on IA, Vol. 12, No. 3, May/June 1976, pp. 232-254. 

[2] S.J. Merhej and W.H. Nichols, “Harmonic filtering for the offshore 
industry”, IEEE Trans. on IA, IA-30, No. 3, May 1994, pp. 533-542. 

[3] S.M. Peeran and C.W.P. Cascadden, “Application, design, and 
specification of harmonic filters for variable frequency drives”, IEEE 
Trans. on IA, Vol. 31, No. 4, July/Aug.  1995, pp. 841-847. 

[4] M.M. Cameron, “Trends in power factor correction with harmonic 
filtering”, IEEE Trans. on IA., IA-29, No. 1, Feb.1993, pp. 60-65. 

[5] C.-J. Chou, C.-W. Liu, J.-Y. Lee, K.-D. Lee, “Optimal planning of large 
passive harmonic filters set at high voltage level”, IEEE Trans. on Power 
Systems, Vol. 15, No. 1, Feb. 2000, pp. 433-441. 

[6] C.-J. Wu, J.-C. Chiang, S.-S. Jen, C.-J. Liao, J.-S. Jang and T.-Y. Guo, 
“Investigation and mitigation of harmonic amplification problems caused 
by single-tuned filters”, IEEE Trans. on Power Delivery, Vol. 13, No. 3, 
July 1998, pp. 800-806. 

[7] R.L. Almonte, A.W. Ashley, “Harmonics at the utility industrial interface: 
a real world example,” IEEE Trans. on Ind. Appl., Vol. 31, No. 6, 
Nov./Dec. 1995, pp. 1419-1426.  

[8] D. Andrews, M.T. Bishop, J.F. Witte, “Harmonic measurement, analysis 
and power factor correction in a modern steel manufacturing facility,” 
IEEE Trans. on IA., Vol. 32, No. 3, May/June 1996, pp. 613-624. 

[9] L.S. Czarnecki, “Effect of minor harmonics on the performance of 
resonant harmonic filters in distribution systems”, Proc. IEE, Electr. 
Pow. Appl., Vol. 144, No. 5, July/Aug. 1995, pp. 349-356. 

[10] J.K. Phipps, “A transfer function approach to harmonic filter design”, 
IEEE IA Magazine, March/April 1997, pp. 68-82.  

XI. BIOGRAPHIES 
Leszek S. Czarnecki received the M.Sc. and 
Ph.D. degrees in electrical engineering and 
Habil. Ph.D. degree from the Silesian Technical 
University, Poland, in 1963, 1969 and 1984, 
respectively, where he was employed as an 
Assistant Professor. Beginning in 1984 he 
worked for two years at the Power Engineering 
Section, Division of Electrical Engineering, 
National Research Council of Canada as a 
Research Officer. In 1987 he joined the Elec-
trical Engineering Dept. at Zielona Gora Tech-
nical University, Poland. In 1989 Dr. Czarnecki 

joined the Electrical and Computer Engineering Dept. at Louisiana State 
University, Baton Rouge, where he is a Professor of Electrical Engineering 
now. For developing a power theory of three-phase nonsinusoidal unbalanced 
systems and methods of compensation of such systems, he was elected to the 
grade of Fellow IEEE in 1996. His research interests include network analysis 
and synthesis, power phenomena in nonsinusoidal systems, compensation and 
supply quality improvement in such systems. (Electrical and Computer 
Engineering Dept., LSU, Baton Rouge, LA 70803, Phone: 225 767 6528), 
czarneck@ece.lsu.edu).  

Herbert L. Ginn (M’ 96) received the M.S. 
and Ph.D. degrees in electrical engineering 
from Louisiana State University in 1998 and 
2002 respectively. He is currently employed as 
a Visiting Research Assistant Professor in the 
Department of Electrical and Computer Engine-
ering at Mississippi State University. His 
current research interests include optimization 
of resonant harmonic filters and design of 
power electronic devices. (Electrical and 
Computer Engineering Dept., Mississippi State 
University, MS 39762, Phone: 662 325 3530, 
ginn@ece.msstate.edu). 


	IEEE Transactions on Power Delivery, April 2004, Vol. 19, pp. 846-853
	Effects of Damping 
	On the Performance of Resonant Harmonic Filters 
	Key Words: resonant harmonic filters, harmonics
	I.  INTRODUCTION
	IV. MAXIMUM HARMONIC AMPLIFICATION
	VIII. DISTORTION AND POWER LOSS
	X.  REFERENCES






