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Abstract: - The paper summarizes the present state of discussions on 
power phenomena, power definitions and compensation in single-phase 
linear circuits. The main concepts developed over several decades on 
how various non-active powers in circuits with nonsinusoidal voltages 
and currents should be defined and compensated are presented along 
with a detailed discussion of these concepts. The paper presents also the 
concept of the single-phase load current decomposition into Currents’ 
Physical Components (CPC) and its application for power definitions 
and compensation in such circuits. The paper is not addressed to scien-
tists and experts on powers, but rather to common electrical engineers 
that sometimes face power related problems in nonsinusoidal systems. 
Index Terms: - nonsinusoidal voltages and currents, harmonics, power 
definitions, power phenomena, apparent, reactive, scattered, unbalanced 
currents or powers.  

1. INTRODUCTION 
Power properties of circuits with nonsinusoidal voltages and 

currents have been investigated and debated for the entire XXth 
century. Some scientists have devoted their entire scientific lives to 
this purpose. A number of “schools” of various interpretations of 
power properties and power definitions were established, taught at 
universities for decades and widespread through academic text-
books. Followers of these schools adhere to them often with a sort of 
religious zeal and discussions are sometimes very emotional.  

At such a level of controversy, a common electrical engineer 
could be confused. According to author’s observations, usually they 
do not know how to write a power equation of a load when the 
supply voltage is nonsinusoidal. Therefore, this paper is not address-
ed to experts on powers, but to common engineers, not particularly 
involved in power issues, with a main message that could surprise a 
Reader: power properties of systems with nonsinusoidal voltages 
and currents are not so complex as this controversy suggests. 

The paper starts with a discussion of the most widespread 
traditional approach to power definitions, developed by Budeanu [1] 
It had the strongest impact on our interpretation of power properties. 
Although it was demonstrated in 1987 [2] that Budeanu’s definitions 
are erroneous, they are still supported by the IEEE Standard 
Dictionary [3]. However, a Reader not interested in the historical 
background could omit the first Sections and go directly to Sec. V, 
where the Currents’ Physical Components (CPC) approach is 
discussed. It is only recommended that the Reader would acquaint 
himself with symbols used in this paper.  

The process of energy delivery, as well as the equipment rating 
in the electrical system is described in terms of powers. Beginnings 
of studies on powers and power theory could be traced down to the 
moment at the end of the XIXth century, when it was observed that 
the product of the supply voltage and the load current RMS values, 
known as the apparent power S, could be higher than the load active 
power P. This difference is interpreted in various ways and these 
interpretations, as it will be demonstrated in this paper, affect tech- 
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nical methods of reduction of this difference with a compensator. 
Particular interpretations and related definitions of powers are refer-
red to as Budeanu’s, Fryze’s or other power theories. 

Power theory can be located on a junction of mathematics, 
physics and technology. Therefore, it is not sufficient for a power 
theory to be mathematically correct. This is a trivial expectation. 
Identification of physical phenomena that affect the apparent power 
and description of these phenomena in terms of powers seem to be 
much more difficult. Even worse usually is with technical value of 
power theories. Most of them have failed to provide solutions for 
practical problems and first of all, for compensation 

Power theory, being founded in mathematics, should provide 
strict results. As long as the conditions for which powers were 
defined are fulfilled, results of power theory cannot depend on the 
level of waveform distortion or selection of structure and circuit 
parameters. This feature of power theory is used extensively in this 
paper. Very simplified circuits with high distortion are used to 
provide clear and vivid proofs that some concepts of power theory 
can lead to absurd results. 

Electric power of a device, in a physical sense, is the rate of 
electric energy flow to this device,  

( ) dWp t = dt .                                        (1) 

Being a fundamental physical quantity, this power does not however 
have technical applications, because usually it is a time-varying 
function. Electrical equipment cannot be specified in terms of this 
power. It is mainly used for theoretical studies on energy flow. 
Other powers have to be defined.  

II. POWERS IN SYSTEMS WITH SINUSOIDAL CURRENTS 
Powers defined for single-phase systems with sinusoidal vol-

tages and currents form a natural reference for power definitions in 
more complex situa-
tions, in particular, in 
systems under nonsinu-
soidal conditions and 
in three-phase systems.  

Power properties 
of single-phase circuits 
shown in Fig. 1 with 
sinusoidal supply vol-
tage and current  

 
Fig. 1. Single-phase load with meters 
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are described in terms of three powers. The active or real power,  

1 ( ) ( ) cos
T

0
T

P = u t i t dt = U I ϕ∫ ,                           (2) 

is a mean value, over period T, of the rate of energy flow from the 
source to the load. The reactive power  
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1 ( ) ( ) sin

T

0

T
T

Q = u t i t dt = U I ϕ−∫ ,                       (3) 

is equal to the amplitude of energy oscillation between the supply 
and the load. The apparent power 

2 21 1( ) ( )
T T

0 0
T T

S = u t dt i t dt U I=∫ ∫ ,                      (4) 

is a product of supply voltage and current RMS values.  
These three powers are measured by meters connected as shown 

in Fig 1 and satisfy power equation 
S2 = PP

2 + Q2.                                         (5) 
Electric energy conversion into other forms of energy needed for 

the energy consumer is determined by the active power, P, while 
equipment for energy delivery has to be rated with respect to the 
voltage and current RMS values, i.e., with respect to the apparent 
power, S. The ratio of these two powers 

P
Sλ = ,                                             (6) 

called power factor, specifies effectiveness of utilization of energy 
delivery equipment.  

III. SYMBOLS AND FUNDAMENTALS 
Harmonics used for description and analysis of nonsinusoidal 

voltages and currents could cause an increase in complexity of 
various expressions to such a degree that they could become 
illegible, or at least, difficult to comprehend. Therefore, effective 
mathematical tools and compact symbols are crucial for a clear 
presentation of power properties of such systems. 

Periodic voltages and currents, denoted generally by x(t) = x, of 
the same period T, will not be presented in this paper in a common 
form of the Fourier series,  

0 1cos sinn n
n N n N

1x = X + a n t b n tω ω
∈ ∈

+∑ ∑ ,                (7) 

but in its complex form, namely, as  
1

0

0( ) 2 Re jn t
n

n N n N
x = x t X + eXn

ω

∈ ∈
=∑ ∑ ,                 (8) 

where xn(t) = xn is the nth order harmonic of x, X0 is its mean value, 
N0 is the set of all harmonic orders, n, along with n = 0, and  

1

0

2 ( )
2

n

T
j - jn tn n

n n
a - jbX e x tTX ωΨ= = = ∫ e dt ,            (9) 

is the complex RMS (CRMS) value of the nth order harmonic.  
A scalar product of two periodic quantities x(t) and y(t) of the 

same period T is defined as  

0

1( ) = ( ) ( )
T

x,y x t y t dtT ∫ .                                 (10) 

Calculation of the scalar product with formula (10) involves integra-
tion of the product of time functions, therefore this formula specifies 
scalar product in a time-domain. Description of quantity x(t) in terms 
of its harmonic CRMS values Xn is referred to as its presentation in 
a frequency-domain. The scalar product in this domain is equal to 

0

*( ) = Re n n
n N

x, y X Y
∈
∑ ,                                 (11) 

where Y* is a complex conjugate number. It means, integration in 
the time-domain is replaced by summation in the frequency-domain. 

The RMS value of periodic quantity x(t) is defined as  

0

2

0

1|| || = ( )  = ( )
T

n
n N

and can be calculated in the time- or in the frequency-domain. The 
RMS value of a sum of quantities x(t) and y(t) is equal to 

2|| || = || || + 2 ( ) + || ||2x+y x x,y y .                      (13) 

This RMS value is related to only ||x|| and ||y|| values  

2|| || = || || + || ||2x+y x y ,                               (14) 

only if (x,y) = 0. Quantities that fulfill this condition are referred to 
as orthogonal quantities. The RMS value of their sum can be 
calculated according to (14), i.e., without calculating their scalar 
product. 

Quantities x(t) and y(t) are orthogonal in three cases, namely if 
(i)      ,                                         (15) ( ) ( )  0x t y t ≡

i.e., if one of them is non-zero, the second has to have zero value. 

(ii)  = 2 sin( ),         = 2 sin( 2),x X t y Y t /ω ψ ω ψ π− − ±          (16) 

i.e., if they are sinusoidal functions shifted by 90 degrees. 

(ii)   1 1 = 2 sin( ),    = 2 sin( ),    r sx X r t y Y s t rω ψ ω φ s− − ≠ ,  (17) 

i.e., if they are harmonics of different orders. 
A voltage-current relation of a 

linear, time-invariant two-terminal 
device shown in Fig. 2 can be 
expressed in terms of the device 
admittance Yn, specified by its con-
ductance Gn and susceptance BB

n

n for 
the n  order harmonic or impedance Zth

n, specified by its resistance 
Rn and reactance Xn, namely 

 
Fig. 2. Two terminal device 

          ,n n- j j
n n n n n n nY e G + jB Z e R + jXY Zϕ ϕ= = = = .      (18) 

If the device voltage has the waveform 
1

0 2 Re jn t
n

n N
u = U + eU ω

∈
∑ ,                           (19) 

then, its current is equal to 

1 1
0 0 02 Re 2 Rejn t jn t

n n
n N n N

i I + e = G U + eI Y nUω ω

∈ ∈
= ∑ ∑ . (20) 

Observe, that the definition of the active power, given by eqn. (2) is 
identical to the definition of the scalar product (10) thus, the active 
power of the device is equal to 

* 2

0 0 0

( ) Re n n n n n n
n N n N n N

P = u,i G U R IU I
∈ ∈ ∈

= = = 2∑ ∑ ∑ .         (21) 

The apparent power of such a device is defined as 

0 0

2 = || || || || = n
n N n N

S u i U I
∈ ∈

⋅ ⋅ 2
n∑ ∑ .                     (22) 

Definitions of other powers and the power equation of single-phase 
systems will be discussed in next sections. 

IV. OVERVIEW OF POWER DEFINITIONS 

Discussions on definition of powers for nonsinusoidal systems 
started in 1892 when it was observed that power equation (5) in such 
systems could not be satisfied. Budeanu, and Fryze have contributed 
to the most remarkable and widespread approaches to power defini-
tions for systems with nonsinusoidal voltages and currents and only 
these approaches will be drafted and their flaws will be discussed in 
this paper. 

Budeanu introduced in 1927 the following definition of the 
reactive power, supported by the IEEE Standard Dictionary [3], 

2x x,x x t dt XT
∈

= ∑∫ ,                (12) Bsinn n n n
n N n N

Q = U I Q Qϕ
∈ ∈

= =∑ ∑ ,                       (23) 

 2



interpreted, like the reactive power in single-phase systems with 
sinusoidal voltages and currents, as a measure of the apparent power 
increase due to energy oscillations between the supply and the load. 
He introduced also the distortion power, defined as  

2 2 2D = S - P - Q ,                                   (24) 
also supported by Ref. [3] and interpreted as a measure of apparent 
power increase due to the waveform distortion. Unfortunately, these 
two interpretations are erroneous. It is a conclusion from the follow-
ing reasoning. 

The reactive power of the nth order harmonic, Qn = UnIn sinϕn is 
indeed the amplitude of the oscillating component of the instanta-
neous power. However, these amplitudes for different harmonics 
could be of the opposite sign, so that they could cancel mutually. 
Consequently, energy oscillations between the supply source and the 

load could exist even at 
zero Budeanu’s reac-
tive power Q.  
Illustration 1. Let us 
consider the circuit 
shown in Fig. 3. The 
load has admittance for 
the fundamental har-
monic Y1 = -j1/4 S and 
for the third order har-

monic Y3 = j4 S. If the supply voltage is 

1( ) = 2(100sin 25sin3 )Vu t t tω ω+ 1 ,   ω1 = 1 rd/s, 
then the load current is equal to 

0
1 1( ) = 2 [25 sin ( 90 ) 100 sin (3 90 )] Ai t t tω ω− + + 0 . 

The reactive power calculated according to Budeanu’s definition is  
Q = Q1 + Q3 = 2500 – 2500 = 0. 

However, in spite of zero reactive power Q, there is energy oscil-
lation in this circuit, 
because instantane-
ous power p(t), 
shown in Figure 4, 
changes its sign. 
When it is positive, 
energy flows to the 
load, when it is 
negative it flows 
back to the supply 
source. 

Definition (24) 
of distortion power 
could be rearranged to the form  

2 2 2 2 2 21
2 r s r s

r N s N
D = S - P - Q = U U | - |Y Y

∈ ∈
∑ ∑ .           (25) 

The expression under the root is a sum of terms that are equal to 
zero for r = s. If harmonics of different order rth and sth are present 
in the supply voltage, it means RMS values Ur and Us are not equal 
to zero, but the load admittances are different, i.e., Yr ≠ Ys, for these 
harmonics, then these terms have a positive value. Such terms 
cannot cancel mutually thus distortion power is equal to zero only if 
for each harmonic  

Yr = Ys,                                            (26) 
i.e., if the load admittance Yn does not change with harmonic order. 
Unfortunately, this condition differs from the condition for the lack 
of the voltage and current mutual distortion. Indeed, the load current 
is not distorted with respect to the supply voltage, but only shifted, if 

i(t) = a u(t - τ).                                      (27) 

If the supply voltage is periodic, then the CRMS values of the vol-
tage and current harmonics have to satisfy relation 

- jn
n n n= a eI U Y Uτ = n .                            (28) 

It means, a load does not cause current distortion only if the load 
admittance  

jjn n
n = ae aeY ϕτ −− = ,                              (29) 

has a constant magnitude, but the phase ϕn = nτ, that is proportional 
to the harmonic order, n. Thus, condition for zero distortion power, 
(26), and condition for the lack of distortion, (29), could be fulfilled 
at the same time only if for a purely resistive load. Otherwise, these 

conditions contradict each 
other. It means that dis-
tortion power D has noth-
ing in common with the 
waveform distortion. 
Illustration 2. The load 
shown in Fig. 5 is sup-
plied with the same vol-
tage as in Illustration 1 
The load admittance or 

the 1st and the 3rd order harmonics are  

 
Fig. 5. Circuit with current distortion, 
but with non-zero distortion power D 

 
Fig. 3. Circuit with zero Budeanu’s reactive 

power Q, but with energy oscillation 2
1

1 3 1 S4 4 2
j

j j eY
π−

= − = , 

32 2
3

3 1 1 1 S4 4 2 2
j j

j j e eY
π π−

= − = = . 

Thus, the load admittance satisfies the condition for the lack of the 
voltage and current mutual distortion (29) and indeed, the load 
current has the waveform 

1 1

1 14 4

3( ) = 2[50sin( ) 15sin(3 )2 2
1     = 2[50sin ( ) 15sin3 ( ) ( ),2

T T

i t t t

t t u

π πω ω

ω ω

− + − =

− + − = − 4
Tt

 

shown in Fig. 6, thus, 
it is shifted, but not 
distorted with respect 
to the voltage 
waveform. Distortion 
power D is not equal 
to zero, however. It 
could be calculated 
from eqn. (24) or (25). 
Equation (25) for only 
two voltage harmonics 
simplifies to one term 

and the distortion power is equal to 

 
Fig. 4. Instantaneous power of the load 

shown in Fig. 3 

 
Fig. 6. Voltage and current in a circuit  

with non-zero distortion power, D 

2 2
1 3 1 3

1 1100 25 2 5 kVA2 2
j j

D U U | | | e e | .Y Y
π π−

= − = ⋅ ⋅ − = . 

These two illustrations demonstrate that Budeanu’s power theory 
provides an erroneous interpretation of power properties of single-
phase circuits. Reactive and distortion powers are not associated as 
suggested with energy oscillation and current distortion. 

The Budeanu’s power theory is also useless for practical appli-
cations, in particular, for the power factor improvement. The reac-
tive power Q in systems with sinusoidal voltages and currents is a 
basic quantity needed for power factor calculation and for compen-
sator design. The reactive power Q defined by Budeanu cannot be 
used for such purposes. Also, no method of compensation of 
Budenu’s distorton power D was developed.  
Illustration 3. Observe that Budeanu’s reactive power Q of the load 
shown in Fig. 3 is equal to zero while the load current RMS value is 

2 2 2 2
1 3|| || = 100 25 103 1 Ai I I .+ = + = . 
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However, in spite of zero Budeanu’s reactive power Q, the supply 
current could be compensated entirely by a shunt compensator 
shown in Fig. 7. Its admittance for the 1st and the 3rd order harmo-
nics is Yc1 = j1/4 S 
and Yc3 = -j4 S. Con-
sequently, the load 
with the compensa-
tor has zero admit-
tance for these two 
harmonics and be- 
haves as an open cir-
cuit. 

Fryze introduced [4] definition of the reactive power based on 
the load current decomposition into the active and reactive currents 
in a time-domain, without any use of a harmonic concept, 

i(t) = ia(t) + irF(t),                                     (30) 
with the active current defined as a current component that is pro-
portional to the supply voltage 

a e e 2( ) = ( ),         
|| ||

Pi t G u t G
u

= ,                         (31) 

and of minimum RMS value needed to provide the active power P. 
The active and reactive currents are orthogonal mutually, thus, 

their RMS values satisfy the relation 
2 2

a rF|| ||  = || || + || ||i i i 2 ,                                  (32) 
which after multiplication by the square of the voltage RMS value 
results in the power equation 

S2 = P2 + QF
2,                                      (33) 

with Fryze’s definition of the reactive power 
QF = ||u|| ||ir||.                                      (34) 

It is a very simple definition, easy for instrumentation and for evalu-
ating the value of the useless component of the apparent power. 
Unfortunately, it also has major deficiencies. There is no explicit 
relation of this current to load properties and parameters and con-
sequently, it is not clear how to shape the load properties to reduce 

this power. It is because 
all power phenomena in 
the load, other than 
permanent energy con-
version, contribute toge-
ther to this power. Thus, 
it has no cognitive 
merits.  

The Fryze’s power 
theory also does not 

provide fundamentals for improving power factor and power quality. 
The knowledge of the Fryze’s reactive power QF does not enable us 
to design a compensator for reducing this power. Moreover, it is 
even unclear whether compensation of this power is possible or not. 
As illustrated below, this conclusion applies even to linear loads. 
Illustration 4. Let us consider two loads shown in Fig. 8 supplied 
with the same distorted voltage  

1 1 1( ) 100 2 (sin sin3 ) V     1 rd/s.u t t t ,ω ω ω= + =  
The load in Fig. 8a has admittance for the 1st and the 3rd harmonics 
equal to,  045

1 0 5 0 5 0 5 2 Sj. j . . eY = + = ,   
045

3 0 5 0 5 0 5 2 Sj. j . . eY −= − = . 
Thus 

1 1 1 70 1AI Y U .= = ,      3 3 3 70 1AI Y U .= = , 
and the load current RMS value is 

2 2 2 2
1 3|| || 70 1 70 1 100 Ai I I . .= + = + = . 

Since 
2 2 2 2
1 3|| || 100 100 140 2 Vu U U .= + = + = . 

Thus, apparent power is equal to 

 
Fig. 7. Example of compensation of a load 

with zero Budeanu reactive power Q 

|| || || || 140 2 100 14 0 kVAS u i . .= = × = , 
while the active power 

2 2 2

1,3
0 5 100 0 5 100 10 kW,n n

n
P G U | . .

=
= = × + × =∑  

and the Fryze’s reactive power is equal to  

2 2 2 2
F 14 0 10 10 kVArQ S P .= − = − = . 

Power factor of the load is λ =P/S = 0.71. Similar calculations for the 
load shown in Fig. 8b result in 

072
1 0 1 0 3 0 316 Sj. j . . eY = + = ,    . 

018 4
3 0 9 0 3 0 95 Sj .. j . . eY −= − =

1 1 1 31 6 AI Y U .= = ,  ,  3 3 3 95 AI Y U= = 2 2
1 3|| || 100 Ai I I= + = , 

and consequently 
2 2 2

1,3
0.1×100 + 0.9×100 =10 kW,n n

n
P G U

=
= =∑  

S = 14.0 kVA,           QF = 10 kVAr,          λ = 0.71. 
It means that loads in Figs. 8a and 8b cannot be distinguished in 
terms of Fryze’s powers and the power factor. 

Admittance of both loads has a non-zero imaginary part, thus it 
can be compensated by a shunt reactive compensator. The load in 
Fig. 8a can be compensated for the 1st and the 3rd order harmonics, if 
the compensator has admittance Yc1 = -j0.5 S and Yc3 = j0.5 S. Such 
a compensator has a structure and parameters shown in Fig. 9a. It 
changes the admittance as seen from the supply source to a real 
value equal to Y1’ = Y3’ = 0.5 S. Thus, it reduces the RMS value of 
the supply current harmonics to 

1 1 1 50 A' 'I Y U= = ,    , 3 3 3 50 A' 'I Y U= =
and the supply current RMS value to 

2 2 2 2
1 3|| || ( ) ( ) 50 50 70 1 A' 'i I I .′ = + = + = . 

Consequently, the apparent power is reduced to 

 
Fig. 8. Two loads that cannot be distinguished  
in terms of Fryze’s active and reactive powers 

|| || || || 140 2 70 1 10 kVA' 'S u i . .= = × = . 
Thus, the Fryze’s reactive power after compensation QF = 0 and 
power factor is improved to λ = 1. 

 
Fig. 9. Loads shown in Fig. 8a and b with compensators 

of reactive power 

Susceptance of the load in Fig. 8b can be compensated entirely, 
if the compensator has admittance for harmonics Yc1 = -j0.3 S and 
Yc3 = j0.3 S. Parameters of such a compensator are shown in Fig. 9b. 
It changes admittance for harmonics to Y1’ = 0.1 S and Y3’ = 0.9 S 
and the RMS value of the current harmonics to  

1 1 1 10 A' 'I Y U= = ,  .  Hence,   ||  3 3 3 90 A' 'I Y U= = || 90 5 A.'i .=
Thus, after compensation  

12 7 kVA'S .= ,     2 2 2 2
F 12 7 10 8 kVAr.Q S P .= − = − =  

It means, that the reactive power QF cannot be compensated entirely 
by such a compensator. The power factor is improved only to 0.78. 

It is interesting to observe that admittance for harmonics of the 
compensated load, Y’, in Fig. 9b is a real number, thus there is no 
phase shift between the voltage and current harmonics. In spite of 
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this, there is still a non-zero Fryze’s reactive power and power factor 
lower than unity. The loads in Fig. 8a and b do not differ in terms of 
Fryze powers, but only one of them could be compensated to unity 
power factor. Moreover, compensators shown in Fig. 9 cannot be 
designed based on the Fryze’s power theory because it is formulated 
in the time-domain, while frequency-domain is needed for a reactive 
compensator design. 

Illustration 4 demonstrates that the Fryze’s approach does not 
provide fundamentals for power factor improvement with reactive 
compensators, such as those shown in Fig. 9. However, there are 
opinions that this theory provides fundamentals for improving 
power factor with switching compensators, known under a common 
name of active filters. These compensators are power electronics 
devices, connected as shown in Fig. 10, and controlled in such a way 

that can compensate the 
Fryze’s reactive cur-
rent, irF, thus, leaving 
only the useful, active 
current ia, in the supply 
current. Symbol jC in 
Fig. 10 denotes control-
led current source that 
injects the reactive cur-

rent into the system. 
Although there are opinions that reduction of the supply current 

to its active component is the utmost goal of compensation, there are 
some doubts. Let us suppose that the supply voltage is distorted and 
an RL load is passive and linear. Impedance of such loads increases 
with frequency thus the 
load current is less dis-
torted than the supply vol-
tage. The supply current 
would be more distorted 
after such compensation, 
because active current is 
proportional to the supply 
voltage. It could not be 
acceptable from the point of view of power quality improvement. 
More doubts occur when the load is nonlinear and generates current 
harmonics, as shown in the following Illustration. 
Illustration 5. Let us consider a circuit shown in Fig. 11, with sinu-
soidal supply voltage  

1100 2 sin   V,e tω=  
and nonlinear loads, that generates the 3rd order current harmonic 

150 2 sin3   Aj tω= . 
The voltage, current and the active power at the load terminals are 

1 180 2 sin - 40 2 sin3    V,u tω ω= t  

1 120 2 sin + 40 2 sin 3    A.i tω ω= t  

1 30

1 cos 1600 1600 0
T

n n n
n ,

P u i dt U I
T

ϕ
=

= = = −∑∫ = , 

and consequently, the active current 

a 2 0
|| ||

Pi u
u

= ≡ . 

It means, that only the Fryze’s reactive current,  

rF 1 1 1 320 2 sin  + 40 2 sin3i i t t i iω ω= = = + ,  
is present in the load current. However, it would be a wrong conclu-
sion that just this current should be compensated. Power factor in 
this circuit declines because the 3rd order current harmonic generated 
in the load j reduces active power P and energy delivered to the 
load. This harmonic can be considered as a source of energy flow 

from the load back to the supply source. The compensator should 
inject the generated current j into the system, but not the Fryze’s 
reactive current irF, to eliminate this phenomenon and to improve 
power factor. 

The phenomenon of energy flow from a load back to the supply 
at harmonic frequencies is not, of course, so visible in real systems 
as in the circuit shown in Fig. 11. Parameters in this circuit were 
purposely selected to obtain zero active power and a clear picture of 
this phenomenon. Nonetheless, current harmonics generated in the 
load due to its non-linearity contribute usually to reduction of the 
active power at load terminals.  

The Fryze’s approach to identification of power properties could 
be summarized as follows. The active current, ia, i.e., the minimum 
current that has to be present in the supply current at a specified 
active power P of the load, is an important and useful concept. 
However, Fryze’s reactive current, irF, and reactive power, QF, 
cannot be interpreted in terms of any phenomenon in the load. 
Moreover, a design of reactive compensators is not possible with 
this approach, while active compensation, based on injection of the 
Fryze’s reactive current, remains at least controversial. 

 
Fig. 10. Circuit with reactive current  

compensator 
V. CURRENT’S PHYSICAL COMPONENTS 

The Currents’ Physical Components (CPC) based power theory 
explains power properties of single- and three-phase systems with 
linear, time-invariant loads, i.e., loads that do not generate current 
harmonics, and with harmonics generating loads (HGL). Unfortu-
nately, the whole the-
ory cannot be present-
ed in a single paper, 
even written in two 
parts.  

The CPC theory 
has been developed, 
from the original con-
cept presented in [5], 
step by step, starting with the same circuits that were the main object 
of the Budeanu and Fryze’s attempts, i.e., single-phase circuits with 
linear, time-invariant loads and nonsinusoidal supply voltage, as 
shown in Fig. 12a. Association of current components with physical 
phenomena in the load was the main imperative at the development 
of the CPC based power theory.  

 
Fig. 12. Load and its equivalent with respect to 

active power P 
 

Fig. 11. Circuit with harmonic generating 
load 

It starts from Fryze’s separation of the active current and this 
current is preserved in the CPC theory. However, unlike Fryze’s 
theory, the CPC theory recognizes the importance of harmonics and 
frequency properties of a circuit for power properties of electrical 
loads and power definitions. Therefore, the supply voltage and the 
load current should be expressed in terms of harmonics 

1
0( ) 2 Re jn t

n
n N

u t = U eU ω

∈
+ ∑ ,                           (35) 

1
0 0( ) 2 Re jn t

n n
n N

i t = Y U eY U ω

∈
+ ∑ .                   (36) 

Hence, the active current, ia(t), i.e., the current of a resistive equiva-
lent load, shown in Fig. 12b, that at the same voltage u(t) has the 
same active power P as the original load, can be expressed as 

1

0

a e e( ) = ( ) 2 Re jn t
n

n N
i t G u t G eU ω

∈
= ∑ .              (37) 

The remaining component of the load current, after subtracting the 
active current, is equal to  

1

1

a 0 e 0 e

0 e 0 e

( ) ( ) ( ) 2 Re ( )

              ( ) 2 Re ( )     (38)

jn t
n n

n N
jn t

n n n
n N

i t i t Y G U G e

Y G U G jB G e .

Y U

U

ω

ω
∈

∈

− = − + − =

= − + + −

∑
∑
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The active current ia(t) is a minimum current of a load that at voltage  
u(t) has active power P, therefore, this remaining current component 
does not contribute to permanent energy transmission. It can be 
decomposed into the following components 

1
0 e 0 e s( ) 2 Re ( )  = jn t

n n
n N

G G U G G e i tU ω

∈
− + −∑ ( ) ,       (39) 

1 r2 Re  = ( )jn t
n n

n N
jB e i tU ω

∈
∑ .                        (40) 

The first component, is(t), occurs in the load current only if the 
load conductance Gn changes with harmonic order n. In such a case 
conductance Gn is smaller for some harmonics than equivalent 
conductance Ge and it is higher for others. In general, this conduc-
tance is scattered around Ge value. Therefore, current is(t) is referred 
to as a scattered current. Such a change of the conductance is not an 
“exotic” property, but a common property of linear, passive, time-
invariant loads. 
Illustration 6. Let us calculate conduc-
tance Gn for a few harmonic orders of a 
common RL load shown in Fig. 13, assum-
ing that the load has parameters R = 1Ω 
and ω1L = 1Ω. The conductance of such a 
load for harmonic frequencies is equal to 

2 2
1 1

1 1= Im{ } = Im  = Im  = 
+( )

n n
n

RG
R + j n L R n L

Y
Z ω ω

. 

This conductance for parameters given in the illustration is equal to: 
G0 = 1 S,   G1 = 0.5 S,   G2 = 0.2 S,   G3 = 0.1 S,  G4 = 0.06 S,  
The component, ir(t), specified with formula (40), occurs in the 

load current only if the load susceptance BB

n

n for at least one harmonic 
is not equal to zero, i.e., if at least one current harmonic is shifted 
with respect to the supply voltage harmonic. A reactive power 

sin 2
n n n n nQ = U I = B Uϕ − ,                           (41) 

is associated with such a harmonic. Therefore, current ir(t) is refer- 
red to as a reactive current. The formula (38), with definitions (39) 
and (40), can be written in the form 

a s r( ) ( ) + ( ) + ( )i t i t i t i t= .                              (42) 

It means that the load current can be decomposed into three com-
ponents associated with three distinctive physical phenomena in the 
load: (i) permanent energy conversion; (ii) change of the load 
conductance Gn with harmonic order n and (iii) phase shift between 
the voltage and current harmonics. Therefore, these currents are 
called current’s physical components. Their RMS value is equal to 

a a|| || = || || = || ||
Pi G u u ,                                    (43) 

0

2 2
s|| || = ( )n

n N
i G - G

∈
∑ e nU ,                           (44)  

2 2 2
r|| || =  = ( )n

n n
nn N n N

Qi B U U∈ ∈
∑ ∑ .              (45) 

The possibility of calculating the load current RMS value having 
RMS values of currents ia, is and ir depends on orthogonality of these 
currents. According to formula (40) harmonics of the reactive cur-
rent are shifted by 900 with respect to harmonics of the active and 
the scattered currents thus, due to property (16), these currents are 
mutually orthogonal, i.e., their scalar product  

(ir, ia) = 0, and (ir, is) = 0.                              (46) 
However, orthogonality of the scattered and active currents is not 
obvious. Let us calculate with formula (11) their scalar product:  

0 0

* 2
s a e e e e( , )  Re ( ) ( )n n n n n

n N n N
i i = G - G G G G - G UU U

∈ ∈
⋅ =∑ ∑ =

2

2

s

 

0 0

2 2 2
e e e e( ) ( || || ) = 0.            (47)n n n

n N n N
= G G U G U G P G u

∈ ∈
− = −∑ ∑  

Thus, all current’s physical components are mutually orthogonal and 
consequently 

2 2 2
a s r|| || || || || || || ||i i i i= + + .                          (48) 

This relationship could be visu-
alized geometrically with a rec-
tangular box shown in Fig. 14. If 
the length of edges is proportio-
nal to RMS values of current’s 
physical components, then the 
box diagonal is proportional to 
the load current RMS value, ||i||.  

Fig. 14. Rectangular box of RMS 
values of current’s physical 

components 

 
Fig. 13. RL load

Multiplying eqn. (48) by the 
square of the voltage RMS value, 
the power equation is obtained 

2 2 2
sS P D Q= + + ,                                 (49) 

where  
s || || || ||D u i=    and   ,                        (50) r|| || || ||Q u i=

are a scattered power and a reactive power, respectively. 
Current decomposition (42) reveals an earlier unknown pheno-

menon of increase of the current 
RMS value ||i|| and apparent power 
S due to a change of the load con-
ductance Gn with harmonic order.  

 
Fig. 15. Example of a load 

Illustration 7. Let us calculate the 
RMS value of current’s physical 
components of the load shown in 
Fig. 15 if the supply voltage is 

1 15
1 = 50+ 2 Re{100 +20 }V,  =1rd/s,  || || = 113.58 V.j t j tu e e uω ω ω  

The set of voltage harmonics is N0 = {0,1,5} and the load admittance 
for harmonic orders from this set is equal to  

Y0 = 1 S,    Y1 = 0.5 S,    Y5 = 0.04 +j2.31 S, 
and consequently, the load current is 

0
1 1589= 50 + 2 Re{50 + 46.2 e }Aj t j tji e eω ω , 

and its RMS value is equal to 
2 2 2 2 2 2
0 1 5|| || = 50 50 46 2 84 47 Ai I I I . .+ + = + + = . 

To decompose the current into physical components and calculate 
their RMS value, the active power and equivalent conductance of 
the load have to be calculated. The active power is 

2

0 1 5
7 516 kWn n

n , ,
P G U .

∈
= =∑ , 

so that, the equivalent conductance of the load has the value 

e 2 2
7516=  = 0 5826 S

|| || 113 58
PG .
u .

= . 

The RMS value of the load current physical components is equal to 

a a|| || = || || = 66 17 Ai G u . , 

2 2
s e

0 1 5
|| || = ( ) 24 93 An n

n , ,
i G - G U .

∈
=∑ , 

2 2
r

1 5
|| || =  = 46 2 An n

n ,
i B U

∈
∑ . . 
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It is easy to verify that calculated RMS values satisfy relationship 
(48) and indeed 

2 2 2 2 2 2
a s r|| || = || || || || || || 66 17 24 93 46 2 84 47Ai i i i . . . .+ + = + + = . 

Thus, decomposition (42) is strictly satisfied even for very high dis-
tortion. This conclusion is trivial to some degree, because decompo-
sition (42) was not founded on any approximations.  

The scattered and reactive powers of the load shown in Fig 15 
are equal to  

        Ds = 2.83 kVA    and  Q = 5.25 kVAr. 
The scattered power Ds at a distortion level more realistic than that 
assumed in Illustration 7, is usually much smaller than the active 
power. However, the power equation of loads with nonsinusoidal 
supply voltage cannot be fulfilled without the scattered power.  

VI. POWER FACTOR IMPROVEMENT 
Compensation in systems with sinusoidal voltages and currents 

has a clear meaning. Reduction of energy loss at its delivery (i) is 
the major objective of such compensation. At the same time, it 
reduces the voltage drop and investment cost of equipment for 
energy delivery. The objective of compensation in systems with 
non-sinusoidal voltages and currents could be different. It could be 
the same as previously (i), or it could be focused on preventing 
customer (ii) or power utility (iii) equipment from disturbances 
caused by harmonics, by reduction of waveform distortion. These 
different objectives may require different compensating or filtering 
equipment or some sort of trade off between different compensation 
goals. Objectives (ii) and (iii) are mainly a subject of studies on 
power quality and go beyond the subject of this paper, focused on 
power factor rather than on power quality improvement. 

Power factor, i.e., the ratio of the active and apparent powers, 
can be expressed as 

a
2 2

a s r

|| ||

|| || || || || ||

iP
S i i i

λ = =
+ + 2

,                         (51) 

thus, both scattered and reactive currents contribute to power factor 
degradation and could be improved by reduction of these currents. 

There are two kinds of compensators. The most common are 
reactive devices, such as capacitor banks or filters. Less common are 
switching compensators, known as active power filters. Some hybrid 
structures composed of reactive and switching compensators are 
possible as well. Reactive compensators are usually shunt devices,  
i.e., connected as shown in 
Fig. 16. 

An ideal, lossless reac-
tive compensator has zero 
conductance for all harmo-
nic frequencies. Moreover, 
if the load is supplied with 
a fixed voltage, then the 
active power and equivalent conductance Ge are not affected by the 
compensator. It means, such a compensator is not capable of 
compensating the scattered current. It modifies only the reactive 
current RMS to the value  

'
r|| || = ( )n xn n

n N
i B + B

∈
∑ 2 2U .                            (52) 

In particular, if for each harmonic of the order from set N,  
Bxn = - BBn,                                         (53) 

then the reactive current is entirely compensated and power factor 
reaches its maximum, possible at shunt reactive compensation: 

a
max 2 2

a s

|| ||

|| || || ||

i

i i
λ =

+
.                              (54) 

Examples of such compensation were given in Illustrations 3 and 4. 
Compensators in these examples satisfy condition (53). Relation 
(54) also explains why it was not possible to compensate the load in 
Fig. 8b to unity power factor while this was possible for the load in 
Fig. 8a. The load in Fig. 8a has the same conductance for the funda-
mental and for the 3rd order harmonic, thus, it has zero scattered 
current. This conductance changes for the load in Fig 8b, thus, it has 
a non-zero scattered current which cannot be compensated by any 
shunt reactive compensator.  

Scattered and active currents and powers are not affected by a 
shunt reactive compensator only if such a compensator does not 
change the load voltage, but this is possible only when the supply 
bus has an infinite power. Otherwise they change with the voltage 
harmonics RMS value, Un, change due to a voltage drop on the sup-
ply source impedance. This change could be particularly high when 
a resonance between the compensator and the supply source occurs 
in the system. Usually it is the resonance between capacitance of the 
compensator and inductance of the supply source. It could lead to a 
disastrous increase of waveform distortion in systems with capacitor 
banks, designed under the assumption that voltages and currents are 
sinusoidal, while there were some distribution voltage harmonics 
or/and current harmonics generated by the load, but neglected 
during the compensator design.  

If a capacitor compensates the reactive power Q of the load 
entirely, its capacitance has to be equal to 

2 2
1 1

tanQ PC =
U U

ϕ
ω ω

= ,                          (55) 

and this capacitor could 
resonate with the supply 
inductance Ls.  

The impedance of RL 
loads increases with frequ-
ency, therefore, a circuit 
with such a load supplied 
from an inductive source 
and compensated by a capacitor, behaves in the range of frequency 
ω >>ω1, as the circuit shown in Fig. 17. If the load generates 
harmonics, they occur in this equivalent circuit as a current source, j.  

 
Fig. 17.Equivalent circuit  

of compensated load for ω  >> ω1

Dependence of the load voltage on frequency in the circuit with 
a voltage resonance can be expressed by the Load-to-Distribution 
Voltage (L/DV) transmittance, 

2
s r

( ) 1 1( ) =  ( ) 1 1 (
U jA j E j L C /

ωω ω ω ω
= =

− − 2)ω
,                 (56) 

 
Fig.16. Shunt reactive compensator 

where  

r 1 / L Cω = s ,                                      (57) 
is the resonant frequency. Inductance Ls depends on the short circuit 
power of the bus where the capacitor bank is installed. If the supply 
source reactance is much higher than the source resistance, then the 
short circuit power Ssc is approximately equal to  

2

sc
1 s

 ES Lω≈ .                                        (58) 

Hence, the resonant frequency could be expressed as 

sc sc
r 1 = tan tan

U S S
E P P 1ω ωϕ ≈ ωϕ ,                    (59) 

thus, the resonant frequency ωr is determined entirely by the short 
circuit power, load active power and its power factor, λ = cosϕ.  

Observe that the magnitude of the L/DV transmittance A(jω) is 
higher than one for frequency ω such (ω/ωr)2 < 2. It means that all 
distribution voltage harmonics of the frequency below 2 ωr are 
amplified by a compensator. This amplification increases to infinity 
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at resonant frequency. It is limited in real systems by resistance of 
the supply source and the load, in particular, purely resistive ones. 
Illustration 8. The plot of the magnitude of the L/DV transmittance 
for a system with the ratio Ssc/P = 50, the reactance to resistance of 
the supply Xs/Rs = 5, and power factor λ = 0.71 is shown in Fig. 18. 
All harmonics of the distribution voltage up to 10th order are ampli-
fied in such a situation. The highest amplification, approximately 
twenty times, is for the 7th order harmonic. Thus, capacitive 

compensation in 
systems with 

nonsinusoidal 
voltages and 
currents could 
contribute to an 
increase of vol-tage 
and current 
distortion and have 
low effectiveness. 
On the other side, 
whole compensa-
tion of reactive cur-
rent in such a way 
that condition (53) 

is fulfilled for each voltage harmonic, usually requires compensators 
built of a high number of 
reactive components. In such a 
situation it could be reasonable 
to give up a whole 
compensation of the reactive 
current for its minimization by a 
compensator with complexity 
limited to two reactive 
components. Such a 
compensator should have a structure and parameters that make 
resonance for harmonic frequency impossible. Such requirements 
could be fulfilled by the LC compensator shown in Fig. 19.  

If series inductance L is selected such that frequency range of 
amplification is below the 2nd order harmonic, i.e.,  

1
s

1 2
( + )L L C

ω< ,    (60) 

then the compensator does not increase waveform distortion and it 
can be assumed that voltage harmonics are not affected by the 
compensator. Since the LC branch susceptance is equal to 

1
x x 2 2

1
= Im{ } = 

1n n
n CB
n LC

Y ω
ω−

,                         (61) 

the compensator changes the RMS value of the reactive current, 
according to formula (52), to  

' 21
r 2 2

1
|| || = ( )

1n
n N

n Ci B +
n LC
ω
ω∈ −

∑ 2
nU .                    (62) 

It has minimum when a derivative of this RMS value with respect to 
capacitance C is equal to zero, i.e., d||ir’||/dC = 0. It results in 
formula 

2 2 2

1 2 2 3 2 2 2
1 1

C 0
(1 ) (1 )

n n n n

n N n N

n B U nB U
- n LC - n LC

ω
ω ω∈ ∈

+ =∑ ∑ .       (63) 

Unfortunately, capacitance C is not in an explicit form in this formu-
la. Therefore, numerical methods are needed for capacitance calcu-
lation. In particular, it could be found using iterative formula  

2

2 2 2
1

1 2 2

1 2 2 3
1

(1 )               (64)

(1 )

n n

kn N
k

n n

kn N

n B U
n LCC C
n B U
n LC

ω

ω
ω

∈
+

∈

−
= − →

−

∑

∑
.  

This iteration can start from the capacitance value given by (55), 
while any inductance that satisfies condition (60) could be selected. 
After capacitance C is calculated, condition (60) should be verified 
again. If it is not satisfied, a different inductance should be selected. 
 

 
Fig. 18. Plot of L/DV transmittance 

versus relative frequency ω/ω1

VII. CONCLUSIONS 

The paper demonstrates that it is possible to associate power 
related phenomena in single-phase linear loads under nonsinusoidal 
conditions with distinctive components of the load current and 
define non-active powers associated with these components. Such 
powers characterize power properties of the load much better than 
the reactive and distortion powers introduced by Budeanu and 
supported by the IEEE Standard Dictionary of Electrical and 
Electronics Terms [3]. The same is the reactive power definition 
suggested by Fryze. Moreover, both Fryze’s reactive power, as well 
as powers supported by [3], do not provide any fundamentals for 
compensator design while the CPC based power definitions provide 
a clear base for the power factor improvement in single-phase 
circuits with nonsinusoidal supply voltage.  

The paper demonstrates that power phenomena in single-phase 
linear loads with nonsinusoidal supply voltage are not complex. It 
seems, that some widespread but erroneous definitions of powers 
and their interpretations are the main obstacle for understanding 
power properties of such loads. 

 
Fig. 19. Series LC compensator REFERENCES 
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