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Abstract: - The paper summarizes the present state of discussions on 
power phenomena, power definitions and compensation in three-phase 
three-wire linear circuits with nonsinusoidal voltages and currents. In 
particular, definitions of the arithmetic and geometric apparent powers 
are discussed. It is shown that these two powers result in an erroneous 
value of power factor of unbalanced loads even if voltages and currents 
are sinusoidal. A reasoning that leads to a right selection of the apparent 
power definition is presented as well. The paper also presents the con-
cept of the three-phase current decomposition into Currents’ Physical 
Components (CPC) and its application for power definitions and com-
pensation in three-phase circuits. 
Index Terms, - power definitions, power phenomena, apparent, reactive, 
scattered, unbalanced currents or powers.  

1. INTRODUCTION 

There were numerous attempts to explain and describe power 
properties of three-phase systems with nonsinusoidal voltages and 
currents using Budeanu’s or the Fryze’s approach to power defini-
tions. Unfortunately, even apparently successful results of such an 
extension convey all misconceptions and deficiencies of these two 
approaches, discussed in Part 1, with such an extension. Also, an 
extension from sinusoidal to nonsinusoidal condition requires that 
power properties of three-phase systems in sinusoidal conditions are 
described properly. Unfortunately, the commonly used power 
equation of three-phase systems  

S2 = PP

2 + Q2,                                        (1) 
provides a true value of the apparent power and power factor only if 
the load is balanced. Some misconceptions with respect to definition 
of the apparent power are demonstrated in the following Section. 

II. DOUBTS WITH RESPECT TO APPARENT POWER 
DEFINITIONS  

The active and reac-
tive powers in three-
phase, three-wire sys-
tems, shown in Fig. 1, 
with sinusoidal supply 
voltage and sinusoidal 
line currents are defined 
as follows 

R R S S T T f f f
f =R,S,T

1 ( + + ) cos
0

T
P = u i u i u i dt = U IT ϕ∫ ∑ ,         (2) 

f f f
f =R,S,T

sinQ = U I ϕ∑ .                              (3) 

However, there are two different definitions of the apparent power 
in the IEEE Standard Dictionary of Electrical and Electronics Terms 
-------------------------- 

[1] namely 
R R S S T T AS = U I U I U I S+ + = ,                       (4) 

G
2 2S P Q S= + = ,                                (5) 

referred to as arithmetic and geometric apparent powers, respective-
ly. There is a third definition, suggested in Ref. [2], 

R S T R S T
2 2 2 2 2 2S U U U I I I S= + + + + = B ,               (6) 

but not referred to in Standard [1]. These three definitions result in 
the same value of apparent power S, only if the line currents are 
symmetrical. Otherwise these values are different. 

Illustration 1. An elec-
tric train loads only a 
sin-gle phase of a three-
phase system. Let us 
sup-pose that such a load 
and its supply is 
simplified to the 
structure with a loss-less 
transformer and pa-
rameters shown in Fig. 2. 

Assuming that the 
line-to-ground voltage RMS value is 277 V and transformer turn 
ratio is 1:1, the active power at the supply terminals is P = 115.1 
kW, while the apparent power, depending on the definition, is 

 
Fig. 2. Example of three-phase supply 

of a  single-phase load 

SA = 132.9 kVA, SG = 115.1 kVA, SB = 162.8 kVA. B

Consequently, power factor depends on the selected definition of the 
apparent power and is equal to, respectively, 

λA = 0.86, λG = 1,  λB = 0.71. B

Observe, that the reactive power in the system considered is Q = 0, 
thus, power equation (1) is satisfied only for the geometric definition 
of the apparent power. However, the question arises: is the power 
factor at supply terminals indeed equal to λ = λG = 1? It will be 
shown in Section V that this would be a wrong conclusion. 

 
Fig. 1. Three-phase, three-wire system 

III. SYMBOLS AND FUNDAMENTALS 
Symbols introduced in the first part of this paper for single-

phase systems with nonsinusoidal voltages and currents could be 
generalized to three-phase, three-wire systems, shown in Fig. 1, as 
follows. 

Three-phase, sinusoidal line-to-ground voltages uR, uS and uT 
and line currents iR, iS and iT, denoted generally by xR, xS and xT, 
could be arranged into three-phase vectors:  

1 1

R R

S S

T T

2 Re 2 Rej t
x
x e
x

X
X
X

j teω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x X .          (7) 
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If these quantities are nonsinusoidal, but periodic of the period T,  
and three-phase vectors of harmonics are denoted by xn, then these 
quantities could be expressed as 

12 Re jn t
n n

n N n N
e ω

∈ ∈
= =∑ ∑x x X .                      (8) 

Observe, that it was assumed that the voltages and currents in the 
considered systems do not contain a DC component. If needed it 
could be included.  

The scalar product of three-phase periodic quantities x(t) and 
y(t) of the same period T is defined as  

T
R R S S T T

0 0

1 1( ) = ( ) ( ) ( )
T T

, t t dt x y x y xT T= + +∫ ∫x y x y y dt ,     (9) 

where superscript T denotes a transposed matrix x(t). This scalar 
product can be calculated in the frequency-domain as 

T *( ) = Re n n
n N

,
∈
∑ X Yx y .                              (10) 

The asterisk denotes a conjugate number. Observe, that definition of 
the scalar product (10) is identical with the formula for calculating 
the active power in three-phase systems, specified with eqn. (2), i.e.,  

T *( ) Re n n
n N

P = ,
∈

= ∑U Iu i .                             (11) 

The RMS value of a three-phase vector is defined as 

T

0

1|| || = ( )  = ( ) ( )
T

n n
n N

, t t dtT
∈

⋅ = ⋅∑∫ X Xx x x x x T * .       (12) 

The last formula could be rearranged to the form 

R
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∑
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   (13) 

thus, the RMS value, or a three-phase quantity, is equal to the root 
of the sum of squares of the RMS value of phase quantities. 

Formulae (12) and (13) provide [4] a mathematical definition of 
the RMS value of a three-phase quantity. A crucial question is: has 
such a definition any physical and technical meaning? To answer 
this question, let us calculate the active power of a three-phase 
device, shown in Fig. 3a, with nonsinusoidal currents iR, iS and iT. 

 
Fig. 3. Three-phase device (a) and its equivalent (b) 

Assuming that line resistances RR, RS and RT, do not change with 
harmonic frequency, the active power of such a device is equal to 

R R S S T T
2 2= || || + || || + || ||P R i R i R i 2

2

.                     (14) 

Transmitting equipment is usually built in such a way that the phase 
symmetry is preserved to a high degree. Therefore, it can be assum-
ed that RR = RS =RT = R. In such a case  

R S T
2 2 2= (|| || +|| || +|| || )  = || ||P R i i i R i .                   (15) 

Thus, any three-phase symmetrical device with phase resistance R 
and asymmetrical currents iR, iS and iT is equivalent as to the active 
power P to a single-phase device, shown in Fig. 3b, with the same 
resistance and the current RMS value equal to  

R S T
2 2|| || = || || || || || ||i i i+ +i 2 .                          (16) 

This reasoning provides a clear physical meaning for the RMS value  
of three-phase vectors. Moreover, such a three-phase device should 
be designed with respect to dissipation of the power that is pro-
portional to the square of ||i|| value. Thus, this value has a clear tech-
nical meaning. Observe, that the RMS value ||u|| of three-phase 
voltage vector, u, has the same physical and technical meanings. 

IV. THE INSTANTANEOUS REACTIVE POWER p-q 
THEORY 

Since the main approaches to power theory, as suggested by 
Budeanu and Fryze, were not capable, as demonstrated in Part 1, of 
describing power properties and providing fundamentals for 
compensation of single-phase systems, they are useless for the same 
purposes in three-phase systems.  

In such a situation, a new concept, known as the Instantaneous 
Reactive Power (IRP) p-q Theory, has been developed by Akagi, 
Kanazawa and Nabae, [3]. It was to provide mathematical funda-
mentals for the control of PWM inverter based switching compensa-
tors, commonly known as “active power filters”. According to 
Authors [3], the development of the Instantaneous Reactive Power 
p-q Theory was a response to “...the demand to instantaneously 
compensate the reactive power” and the adjective “instantaneous” 
suggested that this theory could instantaneously provide information 
needed for a compensator control.  

The IRP p-q Theory is commonly used not only as a funda-
mental for compensator control, but also as a fundamental for 
description and interpretation of power properties of three-phase 
systems. Unfortunately, although the IRP p-q Theory seems to be 
useful for compensation, it misinterprets power properties of such 
systems. Detailed analysis of the IRP p-q Theory and conclusions 
from that analysis is presented in paper [5]. 

V. SELECTION OF APPARENT POWER DEFINITION 

Before any attempt at clarifying power properties of three-phase 
systems with nonsinusoidal voltages and currents, an acceptable 
definition of the apparent power should be selected.  

Similarly as in single-phase systems, the apparent power in 
three-phase systems is not a physical, but a conventional quantity. 
However, apparent power definitions compiled in Section II, when 
applied to unbalanced loads result, as it was demonstrated in Illus-
tration 1, in different numerical values of the apparent power S and 
consequently, in different values of the power factor.  

Various objectives could be taken into account when a conven-
tion for the apparent power definition is selected. One of them, and 
probably the most important, is such a definition that results in a 
right value of power factor, λ, i.e., the value that characterizes 
correctly the power loss at energy delivery. In such a case, the issue 
of selection of the apparent power definition boils down to the 
question: which value λA, λG or λB provides the true value of the 
power factor of an unbalanced load, if this power factor is to 
characterize power loss on energy delivery? 

B

The answer to this question was based on the following reason-
ing. At first, a circuit with a balanced resistive load was found, a 
circuit that at the load active power P = 100 kW has 5% of the 
power loss, i.e., ΔPs = 5 kW, on delivery. Parameters of such a cir-
cuit are shown in Fig. 4.  
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Fig. 4. Circuit with balanced resistive load 

In the next step, the same source supplies an unbalanced resistive 
load, shown in Fig. 5, with the same active power P = 100 kW.  

 
Fig. 5. Circuit with unbalanced load 

Depending on definition of the apparent power, it is equal to 
SA = 119 kVA,    SG = 100 kVA,    SB = 149 kVA, B

and the power factor is equal to, respectively, 
 λA = 0.84,              λG = 1,.                λB = 0.67. B

Observe, that in spite of the same load active power, the power loss 
on energy delivery has increased in the circuit with the unbalanced 
load from ΔPs = 5.0 kW to ΔPs = 11.2 kW. It means, that the load 
shown in Fig. 5 is not a load with unity power factor. This conclu-
sion disqualifies geometric definition (5) of the apparent power. 
However, still we do not know  whether  λA or λB provides the true 
value of the power factor. To answer this question, let us find the 
power factor of a balanced RL load with the same active power, P = 
100 kW, that causes the same power loss, ΔP

B

s = 11.2 kW. Such an 
RL balanced load has parameters shown in Fig. 6. 

 
Fig. 6. Balanced load equivalent to unbalanced load in Fig. 6 

with respect to power loss in the source 

The load in this circuit is balanced thus, the apparent power does not 
depend on the selected definition of the apparent power and SA = SB 
= 149 kVA. Consequently, the power factor is λB = λ = 0.67. It 
means, that the power factor has a true value only if the apparent 
power S is calculated according to definition (6). Arithmetic and 
geometric definitions of the apparent power result in an erroneous 
value of the power factor. However, when the apparent power S is 
calculated according to definition (6), power equation (1) is not 
fulfilled. For example, powers in Illustration 1 are equal to P = 
115.1 kW, Q = 0, and S = 162.8 kVA. Equation (1) is not satisfied 
for such powers. Thus, it is erroneous even for sinusoidal voltages 
and currents. It is true only for balanced loads supplied with a 
symmetrical voltage. However, power properties of such systems 
are trivial and could be described phase by phase as properties of 
single-phase systems. 

B

The same conclusion could be drawn from a different reason- 
ing. The apparent power in single-phase systems is defined as the 
product of RMS values of the voltage and current at the source ter-

minals, i.e., S = ||u|| ||i||. Therefore, it seems to be reasonable to 
define the apparent power in three-phase systems in the same way, 
i.e., as the product of RMS value of three-phase voltage and current 
vectors, u and i,  

= || |||| ||S ⋅u i .                                        (17) 
When voltages and currents are sinusoidal then this definition could 
be expressed in form (6). 

Selection of the acceptable definition of the apparent power is 
the first step in a quest for a power equation of three-phase systems 
that would be valid, unlike equation (1), in systems with unbalan-
ced loads as well. As demonstrated, such an equation is needed even 
for systems with sinusoidal voltages and currents.  

Decomposition of the line currents of three-phase loads into 
components associated with distinctive physical phenomena in the 
circuit is of key importance in development of the power equation. 

VI. CURRENTS’ PHYSICAL COMPONENTS 
IN SYSTEMS UNDER SINUSOIDAL CONDITIONS 

Considerations in this Section are confined to three-phase, three-
wire circuits, shown in Fig. 7a, with linear, time-invariant loads 
supplied with a sinusoidal symmetrical voltage of positive sequence. 
For any such load there exists an equivalent resistive and balanced 
load, shown in Fig. 7b, that at the same voltage has the same active 
power, P, as the original load. 

 
Fig. 7. (a) Three-phase load and (b) its equivalent load 

with respect to active power, P 

The active power of the load in Fig. 7b is equal to 

R S T
2 2 2

e e e|| || + || || + || ||u G u G u G P= ,                     (18) 

thus, this load is equivalent to the original load with respect to the 
active power, if its phase conductance has the value 

R S T
2 2 2e =

|| || + || || + || || || ||
PG

u u u
=

u 2 P

2

.                     (19) 

This conductance is referred to 
as the equivalent conductance 
of a three-phase load.  

 
Fig. 8. Equivalent load in Δ structure 

For any three-phase load 
supplied by a three-wire line, an 
equivalent load of Δ structure, 
shown in Fig. 8, can be found. 

The active power of such a 
load is 

RS RS ST ST TR TR
2 2= Re{ || || || || || || }P u u uY Y Y+ + .                (20) 

The supply voltage is sinusoidal and symmetrical, thus 

RS ST TR R|| || || || || || = 3 || || = || ||u u u u= = u ,                  (21) 

hence 

RS ST TR
2 2

e e= Re{ }|| ||  = Re  || || = || ||P GY Y Y Y+ + u u 2u

e

.      (22) 

The term 

RS ST TR e eG jBY Y Y Y+ + = = +                        (23) 
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is called the equivalent admittance of three-phase loads. Its real part 
is equal to the load equivalent conductance Ge. Its imaginary part, 
Be, is referred to as the equivalent susceptance of three-phase loads. 

The line current of the equivalent resistive load is equal to 

1 1

Ra R

Sa S

Ta T

e

a e e

e

2 Re 2 Re{ } =j t j t
i G
i G e G e
i G

U
U
U

ω ω
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

i U eG u ,    (24) 

and is referred to as the active current. It is the smallest current 
needed for energy permanent conversion in the load with power P. 
The remaining part of the supply current, i – ia, does not contribute 
to energy conversion. It is useless but it contributes to the supply 
current RMS value increase. Let us calculate this difference: 

1

R R

S S

T T

e

a e

e

2 Re j t
G
G e
G

I U
I U
I U

ω
−

−

−

⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦

i i .                     (25)  

The complex RMS (CRMS) value of the line R current is  

R R S RS T R TR

RS ST TR R ST R TR T RS S

( ) ( )
    ( ) ( ).       (26)
I U U Y U U Y

Y Y Y U Y U Y U Y U
= − − − =

= + + − + +
 

Since in systems with supply voltage of positive sequence 

T R S R
2 3          1*, ,U U U U j /e πα α α= = = ,              (27) 

the CRMS value IR can be expressed as follows, 

R RS ST TR R ST TR RS R R Re( ) ( ) = + .   (28)*I Y Y Y U Y Y Y U Y U AUα α= + + − + +  

where  

ST TR RS( *A Y Y Yα α= − + + )

T

S

                            (29) 
will be referred to as an unbalanced admittance. Similarly, the 
CRMS value of the line S and T currents are equal to 

S Se + ,I Y U AU=                                    (30) 

T Te + .I Y U AU=                                    (31) 
When formulae (28), (30) and (31) are combined with (25), then the 
useless current can be expressed in the form 

1 1

R R R

S T S

T S T

e e

a e e e

e e

2 Re 2 Re( + ) . (32)j t j t
G
G e jB e
G

Y U AU U
Y U AU U A
Y U AU U

ω ω
−

−

−

+⎡ ⎤
⎢ ⎥− = + =⎢ ⎥
⎢ ⎥+⎣ ⎦

i i U U #

where  

R R

S

T S

       ,
U U
U
U U

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

U U #
TU .                       (33) 

This formula shows that the useless current in supply lines contains 
two components. The first of them 

1
e2 Re{ } = j tjB e ω iU r                              (34) 

occurs when the equivalent susceptance BB

2

e of the load has a non-
zero value. Since the reactive power  

RS RS ST ST TR TR
2 2 2

e = Im{ || || || || || || } = || ||Q u u u BY Y Y− + + − u     (35) 

can occur only when this susceptance is non-zero, this current is 
associated with the reactive power, Q. Therefore, current ir can be 
referred to as the reactive current. The second component 

1
u2 Re{ } = j teA ω iU #                              (36) 

occurs in the supply current only when coefficient A is not equal to 
zero. This coefficient has zero value when  

YRS = YST = YTR,                                     (37) 

i.e., in balanced systems. Because the voltage vector U# has negative 
sequence, thus, current iu is also of negative sequence and causes the 
supply current asymmetry. Since this current occurs in systems with 
unbalanced loads, it can be called an unbalanced current. Observe, 
however, that equality (37) is not a necessary condition to have zero 
unbalanced admittance. This observation will make compensation of 
unbalanced currents possible. 

Formula (32) for the useless current when combined with for-
mulae for the reactive and unbalanced currents leads to the follow-
ing decomposition [4] of the supply current in three-phase systems 

a r u= + +i i i i ,                                (38) 
specified by three equivalent parameters of the load, Ge, BB

u

u

u

UA A α α

e and A. 
These current components are associated, separately, with three 

distinctive physical phenomena in the circuit: (i) permanent energy  
conversion in the load due to its active power, (ii) current phase shift 
with respect to the supply voltage due to the load reactive power and 
(iii) supply current asymmetry due to the load imbalance. Therefore, 
these currents are referred to as physical components of the supply 
current. Their RMS are 

a e|| || = || ||Gi ,                                       (39) 

r e|| || = | | || ||Bi ,                                      (40) 

u|| || = || ||Ai .                                        (41) 
The relation of the RMS value of the supply current ||i|| to the 

RMS value of its physical components depends on their mutual 
orthogonality.  

The active and reactive currents are mutually orthogonal 
because these currents are shifted mutually by 90 degrees. However, 
their orthogonality to the unbalanced current is not evident. Let us 
calculate the scalar product of the active and unbalanced current, 

T
R

* 2
a u e e( ) )( , ) Re{ } Re{ }(1+ + 0* *G G .= = =i i  U U #    (42) 

Similarly, the scalar product of the reactive and unbalanced current 
T

R
* 2

r u e e( )( , ) Re{ } Re{ }(1+ + ) 0* *jB jBA A α α U ,= = =i i  U U #  (43) 

thus, all physical components are mutually orthogonal and hence, 
their RMS values have to satisfy the relationship 

2 2 2
a r u|| || || || || || || ||= + +i i i i 2

2

.                        (44) 

This relation between RMS values of the current physical compo-
nents could be visualized with the relation between the length of 
edges of a rectangular box and its diagonal, as it is shown in Fig. 9. 

Multiplying equation (44) by the square of the supply voltage 
RMS value, ||u||, the power equation  

2 2 2S P Q D= + +                                     (45) 
would be obtained, where 

2
r e= || || || || = || ||Q B⋅ −u i u ,        (46) 2

u= || || || || = || ||D A⋅u i u

are the reactive and unbalan-
ced powers, respectively. 
This power equation provides 
quantitative information on 
the effect of the power factor. 
Observe moreover, that this 
approach makes it possible to 
express the power factor in 
terms of not only the load 
powers but also the load 
equivalent parameters,  

 
Fig. 9. Rectangular box of RMS values 

of current physical components 

a e
2 2 2 2 2 2 2 2 2

a r u e e

|| ||

|| || || || || ||

GP P
S P Q D G B A

λ= = = =
+ + + + + +

i

i i i
.  (47) 
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Illustration 3. Let us apply the CPC Theory to the circuit shown in 
Fig. 10, supplied with sinu-soidal voltage of the line-to-ground rms 
value U = 277 V, assuming that the load impedance is ZR = (3 + j1) 
Ω.  
For such a load 

0

RS
RS

18 41 1 0 30 0 10 0 316 S
3 1

j .. j . . e
j

Y
Z

−= = = − =
+

, 

hence, the equivalent and unbalance admittances are equal to 
Ye = Ge +j BB

.
e = YRS = 0.30 – j0.10 S, 

0

RS
41 60 316 S* j. eA Yα= − = . 

The RMS value of the supply voltage vector ||u|| = 277 3 = 480 V, 
thus, the RMS values of the supply current’s physical components 
are 

||ia|| = Ge ||u||  = 0.30 x 480 = 144 A, 
||ir|| = |Be| ||u|| = 0.10 x 480 = 48 A, 
||iu|| = A ||u||  =  0.316 x 480 = 152 A, 

and the supply current RMS value is 
2 2 2 2 2 2

a r u|| || || || || || || || 144 48 152 215 A= + + = + + =i i i i . 
This result should be in accordance with the value calculated from 
the definition of the RMS value of the supply current vector. Indeed,  

R S T
2 2 2 2 2|| || || || || || || || 152 152 215 Ai i i= + + = + =i . 

The load powers are  
P = Ge ||u||2  = 0.30 x 4802 = 69 kW, 
Q| = −Be ||u||2 = 0.10 x 4802 = 23 kVA, 
D = A ||u||2  =  0.316 x 4802 = 73 kVA, 
S = ||u|| ||i|| =  480 x 215 = 103 kVA, 

and the power factor is 
69 0 67

103
P .
S

λ = = = . 

Observe, that the power factor calculated with geometric definition 
of the apparent power is λ = 0.95. 

VII. COMPENSATION 
OF REACTIVE AND UNBALANCED CURRENT 

Power equation (45) shows that the unbalanced current contri-
butes to the supply current RMS value and apparent power increase 
and consequently, the power factor decline in the same way as the 
reactive current. Thus, reduction of both currents contributes to 
power factor improvement. These currents can be reduced by a 
shunt balancing compensator. The load is compensated entirely 
when a vector of the line currents, ic, of a balancing compensator is 
equal to the negative value of the sum of the load reactive and 
unbalanced currents, i.e., ic = – ir – iu.  

Balancing compensators can be built as reactive devices, com-
posed of inductors and capacitors, or as fast switching devices, 
composed of a three-phase inverter with a measurement and a 
control system. In the case of reactive compensators, line currents 
are specified by structure and LC parameters of the compensator. In 
the case of switching compensators, line currents are shaped by fast 
switching of inverter’s switches. Switching compensators are not 
discussed here because their operation depends mainly on the 
selected control algorithm, but this goes beyond the scope of this 
paper. Only one issue that differentiates compensation of the 
reactive and unbalanced currents with switching compensators is 
discussed here. It is the question: does the energy have to be stored 
in the compensator during compensation?  

If the supply voltage 
at terminal R is uR = 

2 Ucos(ωt), then the 
instantaneous power of a 
reactive current 
compensator is equal to  

T

2 0 0
cos sin

120 ) sin(

t t

t

ω ω⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥T

r r e
0 0

( ) =  =   = 2 cos( 120 )

cos( 120 ) sin( 120 )

dWp t B U t
dt

t t

ω ω

ω ω

− − − − =⎢ ⎥ ⎥
⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u i

.

⎢

 
Fig. 10. Example of three-phase system with 

unbalanced load 

 
0 0[sin2 sin(2 120 ) sin(2 120 ) 0  Q t t tω ω ω= − + + + − ≡           (48) 

Thus, energy does not have to be stored in the compensator for the 
reactive power compensation, because there is no flow of energy 
between the compensator and the supply. Small energy storage is 
needed only to provide DC voltage or current for the inverter. 

The instantaneous power of a compensator of the unbalanced 
current is equal to 

T

T

2 0 0
u u

0 0

cos cos( )

( ) =   = 2 cos( 120 ) cos( 120 )

cos( 120 ) cos( 120 )
                        cos(2 ).                                             (49)

t t

p t AU t t

t t
D t

ω ω ψ

ω ω ψ

ω ω ψ
ω ψ

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

− − − + + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= − +

u i  

Thus, a compensator of unbalanced current cannot be built without a 
sufficient capability of energy storage. Since the frequency of 
energy oscillation is equal to 2ω, the compensator has to be able to 
store, at least, energy 

2 3 /8 /4

s u
2 /8 0

sin2 2

/ T T

/ T

TW p dt D t dt D
ψ ω

ψ ω

ω π

− +

− +

= = =∫ ∫ .          (50) 

A reactive compensator can have a structure shown in Fig. 11, 
i.e., it can be built of 
three reactance LC 
one-ports, connected 
in delta configuration 
and of branch suscep-
tances TRS, TST and 
TTR. If these one-
ports are ideal, loss-
less devices, then the 
compensator modi-
fies only the reactive and unbalanced currents to  

 
Fig. 11. Circuit with shunt compensator 

1
ST TR RSr e2 Re{ [ ( )] }j tj B T T T e ω′ = + + +i U ,                 (51) 

1
ST TR RS

#
u 2 Re{[ ( )] }j t*j T T T eA ωα α′ = − + +i U .        (52) 

The reactive current is compensated entirely only if 

ST TR RSe (   B T T T ) = 0+ + + .                            (53) 
The unbalanced current is compensated entirely only if  

ST TR RS(   *j T T TA α α− + + ) = 0 .                      (54) 
The left side of the last equation is a complex number, thus, this 
equ-tion is satisfied only if it is satisfied for the real and for 
imaginary parts, i.e., if  

ST TR RSRe{ ( )} = 0*j T T TA α α− + + .                   (55) 

ST TR RSIm{ ( )} = 0*j T T TA α α− + + .                   (56) 
Properties of the compensator are specified by three susceptances 
TRS, TST and TTR. These susceptances satisfy equations (53), (55) and 
(56), if they are equal to 
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RS e( 3Re Im )/3T BA A= − − , 

ST e(2Im )/3T A= − B ,                                    (57) 

TR e( 3Re Im )/3T BA A= − − − . 
When a susceptance TXY obtained from formulae (57) is positive, 
then a capacitor should be selected as the compensator branch. 
When this susceptance is negative, then an inductor should be selec-
ted. Their capacitance and inductance are, respectively, equal to 

XY
XY

1

TC ω= ,             XY
XY1

1L Tω= − .               (58) 

Illustration 4. Let us calculate parameters of a balancing compen-
sator for entire reduction of the reactive and unbalanced currents in 
the system considered in Illustration 3. The equivalent susceptance 
of the load in Fig. 12 is BBe = − 0.10 S, while 

041.6Re Im 0.316 0 236 0 210jj e . j .A A A= + = = +  S. 
Hence, formulae (57) result in the following susceptances of the 
compensator: TRS= 0.10 S, TST= 0.173 S, TTR = − 0.173 S. Thus, 
capacitors should be 
connected between 
lines RS and lines 
ST. Inductor should 
be connected bet-
ween lines TR. The 
structure and para-
meters of the com-
pensator are shown 
in Fig. 12. Such a 
compensator redu- 
ces the RMS value of the supply current vector from ||i|| = 215 A to 
144 A. It restores the supply current symmetry and improves power 
factor from λ = 0.67 to unity.  

This very simple and transparent method of calculation of the 
compensator parameters is an example of benefits from the supply 
current decomposition according to CPC theory. It confirms the 
applicability of this approach to reactive compensator design, but 
first of all, this approach provides a new and credible power equa-
tion of three-phase systems under sinusoidal condition. Also, it pro-
vides a reliable starting point for identification of power properties 
of three-phase systems in more complex situations. 

A generalization of the CPC power theory to systems considered 
in Section VI, but with nonsinusoidal supply voltage is the next step 
towards comprehension of power properties of three-phase systems 
with nonsinusoidal voltages and currents. 

VIII. CURRENTS’ PHYSICAL COMPONENTS 
AT DISTORTED SUPPLY VOLTAGE 

Let us specify power properties and the power equation of three-
phase systems considered in Section V. It is assumed in this Section 
that the supply voltage of a three-phase, three-wire system is 
nonsinusoidal, but symmetrical and of positive sequence, i.e.,  

uS(t) = uR(t−T/3),       uT(t) = uR(t+T/3),                    (59)  
and can be expressed as a sum of harmonics in the form 

12 Re jn t
n n

n N n N
e ω

∈ ∈
= =∑ ∑ Uu u .                     (60) 

The supply current in three-wire systems cannot contain any 
harmonic of the zero order, i.e., i3k = 0, since such a circuit is open 
for zero order voltage harmonics. Therefore, it will be assumed that 
such harmonics do not exist in the supply voltage, i.e., u3k = 0. Such 
an assumption is equivalent to the assumption that the supply vol-
tage is referenced to an artificial neutral point. Without such an 
assumption the concept of the RMS value of the voltage vector ||u|| 
is losing sense, because zero order harmonics of the voltage affect 

this value without affecting the active power of a three-phase, three-
wire device. 

The line current of a three-phase, three-wire load is 

12 Re jn t
n n

n N n N
e ω

∈ ∈
= =∑ ∑i i I .                     (61) 

When a linear, time-invariant load is supplied by a single voltage 
harmonic of the nth order, un, i.e., by a sinusoidal voltage, then the 
line current harmonic in can be decomposed, according to Section 
VI, into the active, reactive and unbalanced currents of that order n. 
It applies to each voltage harmonic, thus, 

1

1

a r u

e e

2 Re ( ) =

               2 Re ( )        (62)

jn t
n n n n n

n N n N n N
jn t#

n n n n n n
n N

e

G jB e .A

ω

ω
∈ ∈ ∈

∈

= = = + +

= + +

∑ ∑ ∑

∑

i i i i iI

U U U
 

If the line-to-line admittances of the load for the nth order harmonic  
are YRSn, YSTn, and YTRn, then its equivalent admittance for that 
harmonic is  

 

Fig. 12. Unbalanced load with balancing 
compensator 

RS ST TRe e e n nn n nG jBY Y Y nY= + = + + .              (63) 

The equivalent conductance and susceptance for the nth order har-
monic could also be related to the active and reactive powers of that 
harmonic, i.e.,  

2e e= Re{ }
|| ||

n

n
n n

PG Y =
u

,                             (64) 

2e e= Im{ }
|| ||

n

n
n n

QB Y = −
u

.                          (65) 

The formula for the unbalanced admittance An calculation depends 
on the sequence of the voltage harmonic. For harmonics of the posi-
tive sequence, n = 3k+1, like the fundamental, USn = α*URn, and 

ST TR RS( n n
*

nA Y Y Yα α= − + + )n

)n

.                          (66) 

For harmonics of the negative sequence, n = 3k - 1, USn = αURn, and 

ST TR RS( n n
*

nA Y Y Yα α= − + + .                          (67) 

With respect to the load active power P at voltage u, the load is 
equivalent to a balanced resistive load, shown in Fig. 8b, of conduc-
tance Ge specified by formula (29). This formula is valid irrespec-
tive if the supply voltage is sinusoidal or not. Such an equivalent 
resistive load draws the active current from the supply source 

1
a e2 Re jn t

n
n N

G e ω

∈
= ∑i U .                        (68) 

The active current is the smallest possible current of a load that at 
voltage u has active power P. The remaining component of the line 
current, i – ia, is useless and only increases the supply current RMS 
value ||i||. It is equal to 

1
a e2 Re ( ) jn t

n
n N

G e ω

∈
− = −∑i i I U .                    (69) 

It means, that the useless current can be expressed as 

1

a a r u a

e e e

( )  =

       2 Re [( ) ]      (70)

n n n
n N

jn t
n n n n n n

n N
G G jB e .A ω

∈

∈

− = + + −

= − + +

∑

∑

i i i i i i

U U U #  

Thus, the useless current has three components. The component 

1
e e2 Re ( ) jn t

n n
n N

G G e ω

∈
−∑  iU s=                      (71) 
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occurs in the load supply current when the load equivalent conduc-
tance Gen changes with harmonic order, i.e., when it is scattered 
around Ge value. Therefore, it is referred to as the scattered current. 
The component  

1
e2 Re jn t

n n
n N

j B e ω

∈
=∑ U  ir                          (72) 

is the reactive current and the component 

1
u2 Re jn t

n n
n N

eA ω

∈
=∑ iU #                           (73) 

is referred to as the unbalanced current. Like previously these cur-
rents are associated with 
distinctive physical phe-
nolmena in the circuit. 
Consequently, the line 
currents of three-phase 
loads supplied with a 
nonsinusoidal voltage can 
be decomposed into four 
physical components, 

a s r u= + + +i i i i i .                                (74) 

The RMS values of these components are, respectively, 

a e|| || = || ||Gi u ,                                               (75) 

2
s e e|| || = ( - ) || ||n n

n N
G G

∈
∑i 2u ,                      (76) 

2
r e|| || = || ||n n

n N
B

∈
∑i 2u ,                                 (77) 

2
u|| || = || ||n n

n N
A

∈
∑i 2u

n

.                                  (78) 

Orthogonality of these currents is not evident yet. Thus, it has to be 
verified.  

Harmonics of different orders are orthogonal, hence the scalar 
product of three-phase vectors could be expressed in the form 

( , ) ( , ) ( , )n n n
n N n N n N∈ ∈ ∈

= =∑ ∑ ∑x y x y x y

≠

2

2

,              (79) 

thus, when harmonics of two different physical components are 
orthogonal, then these components are orthogonal as well. Orthogo-
nality of the active, reactive and unbalanced current in sinusoidal 
conditions, i.e., for individual harmonics, was proven in Section VI. 
The reactive and unbalanced currents are also orthogonal to the scat-
tered current. However, harmonics of the active and scattered cur-
rents are not mutually orthogonal, because in general, 

2
a s e e e( , ) = ( )|| || 0n n nnG G G−i i u .                    (80) 

Nonetheless, the scalar product of entire currents, 
2

a s a s

2

e e e

e e e e

( , ) = ( , ) = ( )|| ||

            = ( )|| || ( ) 0

n n n
n N n N

n
n N

n

n

G G G

G G G G P- P .
∈ ∈

∈

− =

− = =

∑ ∑

∑

i i i i u

u
        (81) 

Thus, all physical components of the line current are orthogonal and 
consequently, its RMS value can be expressed as 

2 2 2 2
a s r u|| || || || || || || || || ||= + + +i i i i i ,                    (82) 

while the power equation has the form 
2 2 2 2

sS P D Q D= + + + .                               (83) 

Illustration 5. Let the supply voltage of the phase R-to ground in the 
circuit shown in Fig. 13 be 

R
51 12 Re{277 11 } Vj t j tu e eω ω= + . 

Since only admittance between phases R and S are not equal to zero 
and equal to  

YRS1 = 0.2 S,  
0

RS5
89 70 01 1 901 1 901 Sj .. j . . eY = + = , 

the line R current is  
0

R
589 71 12 Re{95 95 36 22 } Aj t j tj .i . e . e eω ω= + . 

 
Fig. 13. Circuit with unbalanced load 

iS = − iR, and their RMS values are  

R S
2 2|| || = || || = 95.95 36 22 102 55 Ai i . .+ = . 

The RMS value of the supply current vector is 

R S T
2 2 2 2 2|| || = || || +|| || +|| || 102 55 +102 55 145 03Ai i i . . .= =i . 

Since the RMS value of the supply voltage vector is 

2 2 2 2
1 5|| || = || || +|| || (277 3) +(11 3) 480 156 V.= =u u u , 

the apparent power of the load is equal to  

S = ||u|| ||i|| = 69.6 kVA. 

The load equivalent admittance for the 1st and 5th order 
harmonics are  

  Ye1 = Ge1 + jBe1= YRS1, 

RS5 5 5e e eG jB ,Y Y 5= + =  
and the unbalanced admittance 

0 0

TR1 TR5
120 29 7

1 50 2 S,      1 901 S* j j. e . eA Y A Yα α− −= = = = . . 

The load active power is 

2 2 2
e

=1,5
|| || 0 2 (277 3) 0 01 (11 3) 46 04 kWn n

n
P G . . .= = + =∑ u , 

and the power factor 

0 66P= = .
S

λ . 

The equivalent conductance of the load is 

e 2= 0 1997 S
|| ||

PG .=
u

, 

and this enables us to calculate the RMS value of the supply current 
physical components 

   ||ia|| = 95.88 A,   ||is|| = 3.79 A,   ||ir|| = 36.22 A,   ||iu|| = 102.55 A. 

It could be verified that 

2 2 2 2
a s r u|| || + || || + || || + || || || || = 145 03A.=i i i i i . 

Observe, that the RMS value of the scattered current is much small-
er than the remaining ones. However, without it, current equations 
(74), (82) and the power equation (83) are not fulfilled. 
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IX. CONCLUSIONS 
This paper demonstrates that the commonly used power 

equation (1) and arithmetic and geometric apparent powers, when 
applied to systems with unbalanced loads, provide an incorrect 
power factor and incorrect power rating for energy transmitting 
equipment.  

At the same time, decomposition of the supply current into com-
ponents associated with distinctive power phenomena in three-phase 
systems, according to the Currents’ Physical Components power 
theory, under nonsinusoidal condition is possible. It enables us to 
define powers associated with distinctive power phenomena and 
provide fundamentals for a design of balancing compensators. 
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