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Abstract—Distribution voltage harmonics and load current 
harmonics other than harmonics to which a resonant harmonic 
filter (RHF) is tuned, deteriorate the filter efficiency in reducing 
harmonic distortion. To reduce this effect an optimization based 
design method is developed for the conventional RHF. It takes 
into consideration the interaction of the filter with the 
distribution system and provides filter parameters which give the 
maximum effectiveness with respect to harmonic suppression. 
The results for optimized filters, applied in a typical case, are 
given.  

 
Index terms--passive harmonic filters, harmonic distortion, 

harmonic filter design, shunt tuned harmonic filters 

I. INTRODUCTION 

Due to the presence of harmonic generating loads (HGLs) 
in distribution systems, resonant harmonic filters very often 
operate in the presence of distribution voltage harmonics as 
well as the load current harmonics other than those to which 
the filter is tuned. Some of the voltage and current harmonics 
could be amplified by the filter resonance with the distribu-
tion system inductance, Ls, as seen from the bus where the 
RHF is installed. Moreover, the filter as seen from the distri-
bution system has very low impedance at tuned frequencies. 
Consequently, with the increase of distortion of the distribu-
tion voltage and the amount of non-characteristic harmonics 
in the load current, the efficiency of the filter in reducing dis-
tortion of the bus voltage and the supply current declines.  

Harmonic amplification caused by the filter resonance 
with the distribution system inductance depends on frequen-
cies of this resonance and can be reduced by a selection of the 
filter parameters. Harmful effects of the filter’s low impe-
dance at tuning frequencies can be reduced [2-6, 10, 11] by 
detuning the filter from frequencies of characteristic harmo-
nics. Unfortunately, this detuning reduces the attenuation of 
the load current harmonics. Thus, to improve the filter effi-
ciency, a trade off between attenuation and amplification of 
particular harmonics is needed. This trade off can be achieved 
by a “trail and error” approach or by an optimization 
procedure. 

Unfortunately, the complex interaction of the filter with 
the distribution system and the number of filter design 
parameters makes the best selection of parameters by trial and 
error methods very difficult. In order to solve complex 

problems where the best selection of parameter values is not 
readily apparent, optimization techniques may be employed.  
A method of applying optimization techniques to the design 
of RHFs will be explored and presented in this paper along 
with some performance data for the optimized filters. Such an 
optimization based design method consists of several phases. 
First, a filter prototype is designed which satisfies some basic 
design requirements.  Next, the prototype is analyzed to 
obtain frequency characteristics using the transmittance 
approach [7, 17] and to obtain performance measures. The 
optimization is then performed and analysis is done to 
determine performance.  However, as with most optimization 
routines, the minimum value of distortion obtained may only 
be a local minimum.  Because of this, the optimization and 
analysis should be repeated using different starting filter 
prototypes in order to find several local minima.  The best 
final design can then be chosen out of the set obtained.  In 
order to ensure that all local minima that meet the constraint 
requirements are found, the behavior of the filter cost function 
is investigated. 

The studies discussed in this paper are confined to RHFs 
applied to reduction of harmonic distortion caused by six-
pulse ac/dc converters and rectifiers as well as by other minor 
nonlinear loads supplied from the same bus. Characteristic 
harmonics of such converters and rectifiers are of the order n 
= 6k ± 1, while their asymmetry, asymmetry of the thyristors’ 
firing angle and other loads contribute [2-4, 10, 12] to the 
presence of other current harmonics, referred to as non-
characteristic. The study is limited to filters composed of four 
resonant LC branches that provided a low impedance path for 
the 5th, 7th, 11th and 13th order harmonics. Filters with high-
pass branches were beyond the scope of this study.  

Amplification of some harmonics by a resonance of such 
filters with the distribution system inductance is one of the 
main concerns [2-4, 7, 12]. This resonance cannot be avoided, 
therefore, RHFs are often superseded by switching 
compensators, commonly known as “active harmonic 
filters”(AHFs). Such devices have a number of advantages 
over RHFs. However, the power rating of AHFs is limited by 
their transistors’ switching power. Moreover, high frequency 
switching, necessary for operation of these devices, is a sour-
ce of electromagnetic interference. Therefore, RHFs, might 
still be an important alternative, in particular, if an 
optimization procedure could elevate their efficiency.  
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II. TRADITIONAL DESIGN OF RHFs  

Resonant harmonic filters are designed traditionally by 
calculating the capacitance Ck and inductance Lk, in such a 
way, that each branch has a resonance at a frequency equal to 
or in a vicinity of harmonic frequency, ωk = ζkω1. 
Furthermore, each filter branch compensates reactive power  

Qk = dkQ,                                      (1) 

where Q is the load reactive power per-phase and dk is the 
coefficient of the reactive power allocation to particular bran-
ches of the filter.  

The opinions with respect to the reactive power allocation 
to particular branches are divided. According to Ref. [1], this 
allocation is irrelevant for the filter properties. Consequently, 
it could be assumed that each branch compensates the same 
reactive power, i.e., allocation coefficients have the same 
value. The reactive power allocation for a two branch filter of 
the 5th and 7th order harmonics assumed in Ref [9] is in 
proportion of Q5/Q7 = 2:1, while in Ref. [10] this proportion is 
Q5/Q7 = 8:3. According to Ref. [8], the reactive power 
allocation should be “...proportional to total harmonic current 
each filter will carry”.  

In the presence of distribution voltage harmonics, the filter 
branches are typically tuned to a frequency below the 
harmonic frequency. It increases the branch reactance at the 
harmonic frequency and keeps it inductive, even if the capa-
citance of capacitor bank declines with aging. However, there 
are substantial differences in opinions on how much the 
branches should be detuned. Reference [9] assumes that filters 
are detuned by 5% below harmonic frequencies, while Ref. 
[2] suggests that detuning should be in the range of 3 to 10% 
below these frequencies. Indeed, detuning assumed in Ref. 
[10] amounts to 8% for all branches, i.e., the relative detuning 
is the same for all branches. Thus, there is the lack of a clear 
recommendation with respect to the filter detuning. 

When a harmonic filter is under design, the attenuation of 
dominating, characteristic harmonics is the subject of main 
concern. However, harmonics other than the characteristic 
harmonics are always present. Their level is reported in 
numerous papers [2-6 10, 12]. The traditional approach to 
filter design essentially neglects the presence of non-
characteristic harmonics in the load current and the 
distribution voltage harmonics in the filter design process, 
considering them as kind of “minor” [7] harmonics.  

III. RESONANT FREQUENCY LOCATIONS 
 

In order to adjust filter parameters for the purpose of 
avoiding resonance at harmonic frequencies, the relation 
between reactive power allocation and resonant frequency 
locations is needed.  The quality factor of filter inductors is 
usually very high for RHFs, furthermore, supply and load 
inductance dominate the supply and load impedance at 
harmonic frequencies. Therefore, to find the resonant 
frequencies we may consider a reactive equivalent circuit.  
The equivalent network as seen by the supply for such a 
circuit having a filter with K branches is shown below in 
Figure 1.   
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Figure 1.  Equivalent one-port network viewed from the 

supply terminals. 
 

The lumped impedance of the filter branches and the load 
equivalent inductance L1e are connected in series with the 
equivalent supply inductance Ls.  This means that there will be 
series resonance as seen by the supply that give high values of 
admittance.  The admittance Yx(s) is given by 
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The impedance Ya(s) can be expressed in terms of the reactive 
power allocation coefficients, dk, as 
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For higher values of ζk, (1 – 1/ζk

2) ≈ 1, and therefore, with the 
fundamental frequency normalized to ω1 = 1 the admittance 
Ya(s) can be approximated as 
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Finally, the driving point admittance Yx(s) can be expressed as  
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where the zeros of the polynomial D(s) are the resonant 
frequency locations. Since the filter tuning frequencies should 
be selected prior to the reactive power allocation, the filter’s 
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zeros, zk, are fixed. Therefore, values of the coefficients yk are 
determined only by the reactive power allocation.   
For a two branch RHF  
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so that the resonant frequencies ωr can be obtained from the 
formula 
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Because a1 +  a2 = BB1, changing the reactive power allocation 
only effects the coefficient y2. Also, z1 < z2 and, consequently, 
as a2 increases and a1 declines, the lower frequency pole p1 
will increase in value and the separation between the poles 
will decrease.  
As shown by equation (7), the pole locations of three and four 
branch RHFs are given by the zeros of cubic and quartic 
polynomials respectively. Although there are formulas for the 
solution of cubic and quartic polynomials, the complexity is 
such that it is not possible to draw conclusions about the 
effect of the reactive power allocation on the resonant 
frequency locations.  This adds another level of complexity to 
the trail and error method of design described in the previous 
section when more than two branches are needed. 

IV. OPTIMIZATION OF FILTER EFFICIENCY 

The filter efficiency might be improved if the fixed rules 
with respect to the reactive power allocation, i.e., selection of 
allocation coefficients, ak, to the filter branches and their 
tuned frequencies, ωk, are abandoned for a selection of  
parameters that minimizes the voltage and current distortion.  

There are many different possibilities with respect to 
optimization techniques that could be used for the 
optimization of filter effectiveness in reduction of distortion.  
Some optimization methods were tested and found to give 

poor performance due to the complex behavior of the cost 
function.  It was not always possible to reach a minimum 
point of the function without being relatively close to it.  The 
Polak-Ribiere variation of the Fletcher-Reeves method was 
applied using outside penalty methods to approximate a 
constrained cost function. Although some good results were 
obtained using this method it still exhibited difficulty in 
reaching a local minimum in some cases due to the problem 
of ill-conditioning.  Finally, to overcome the ill-conditioning 
problem the method of multipliers [15] was implemented.  
The method works well for this application and in all testing it 
was able to reach a constrained local minimum of the cost 
function even if the starting point was far away from that 
minimum. 

For optimization procedures it is convenient to have a 
single measure of the performance of a filter with respect to 
attenuation of harmonics in the supply current and harmonics 
in the bus voltage.  Such a measure can be constructed as 
follows.  The distorted component of the supply current 
before a filter is installed, denoted id0, can be compared to the 
distorted component of the supply current after the installation 
of a harmonic filter.  Such a performance coefficient with 
respect to a filter’s effect on the supply current is referred to 
as the effectiveness in reduction of current distortion, defined 
in percent as 
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The maximum effectiveness that a filter can achieve is 100% 
which means that the distorted component of the supply 
current rms value, ||id||, is reduced by the filter to zero.  

The effectiveness in reduction of voltage distortion is a 
performance coefficient with respect to a filter’s effect on the 
bus voltage distortion.  It is defined in percent as 
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where ||ud|| is the distorted component of the bus voltage rms 
value after the filter is installed, and ||ud0|| is the distorted 
component of the bus voltage rms value before the filter is 
installed.  

In order to utilize optimization methods to maximize filter 
effectiveness with respect to harmonic suppression, εi and εu 
should be maximized.  This can be accomplished by the 
minimization of ||id|| and ||ud||.  Unfortunately, minimizing the 
voltage distortion at the bus and minimizing the supply 
current distortion are not equivalent tasks [17].  There has to 
be a tradeoff based on the requirements of a particular filter 
application.  The rms values of the distorted component of the 
supply current and bus voltage can be combined into a linear 
form where each one is multiplied by a weighting coefficient.  
Such a linear form is expressed as 
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where Wi is the weighting coefficient of the supply current 
distortion and Wu is the weighting coefficient of the bus 
voltage distortion.  How the weighting is set determines 
whether the minimization technique effects the current or 
voltage distortion more strongly.  Adjustment of filter 
parameters by an optimization routine may lead to change of 
the load reactive power compensation that is provided by the 
filter.  However, in most cases it may not be reasonable to 
allow the compensation of the load reactive power to be 
reassigned to any value which minimizes f(x).  Therefore, a 
method of constrained optimization must be applied.  Finally, 
a form that is more suitable to optimization algorithms [16] 
and that is equivalent with respect to the location of the 
minimum is 
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To implement the method of multipliers an augmented 
Lagrangian was formed using the cost function (15) and the 
reactive power constraints.  For the case of unity load reactive 
compensation the augmented Lagrangian is equal to 
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The equality constraint h(x) is  
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where BBf1 is the filter susceptance at the fundamental 
frequency, which is a function of the variables x, and QL is the 
load reactive power. The inequality constraints require that 
the n filter circuit elements be positive values.  However, it is 
not necessary to constrain each filter circuit element 
separately. The susceptance of each k filter branch is 
capacitive at the fundamental frequency and can be expressed 
as 

1
1 2

11

k
k

k

CB ω

ω
ζ

=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

   (18) 

 
and the inductance is related to the capacitance as 
 

2
1

1
( )k

k k

L
Cζ ω

=    (19) 

 

where ζkω1 is the branch tuned frequency and is always 
positive. If the susceptance is negative then by (18) the branch 
capacitance is negative which in turn yields a negative value 
of the branch inductance by (19).  Thus, for a filter with K 
branches, there are K inequality constraints, and they can be 
expressed as 
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For the case where there is a range of over or under-
compensation of load reactive power no equality constraints 
are needed and the augmented Lagrangian becomes 
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The constraint g1(x) specifies the upper limit of the over-
compensation and is equal to  
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where a multiplied by the reactive power of the load, QL, 
specifies the upper limit of the overcompensation. If the 
reactive power of the filter exceeds aQL then g1(x) will 
increase. The lower limit of under-compensation is specified 
by g2(x) and is equal to   
 

2
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where bQL specifies the lower limit.  If the reactive power of 
the filter is lower than bQL, then g2(x) will increase.  As 
previously the other K constraints are simply to ensure that 
filter circuit elements are positive, and they are also given by 
(20). 
The method of multipliers requires the adjustment of the 
penalty weighting factor, w, similarly as for the penalty 
method.  The weighting factor was updated according to 
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However, in this case there was no need to dynamically adjust 
the weighting as in the case of a penalty method. A constant 
value for the weight increase of γ=1.2 was used to obtain the 
results presented. The method converged to a constrained 
local minimum of fc(x) from any valid starting point. 
 

V. COST FUNCTION BEHAVIOR 
 

The cost function fc(x) has multiple local minima and 
maxima. When filter parameters are selected such that a 
resonant frequency approaches a harmonic frequency a sharp 
increase in the cost function value may occur.  Consequently, 



local minima occur in a number of regions due to the presence 
of several resonant frequencies. 

The cost function may be observed using a surface or a 
contour plot.  Unfortunately, it is not possible to visualize 
more than three dimensions, therefore, consider a simplified 
example of a two branch conventional RHF.  Assume that the 
filter zeros are fixed so that the cost function, fc(x), of the two 
branch filter is a function of two variables, the reactive power 
allocation of each branch, d1 and d2. The two-branch filter 
with branches tuned to the 5th, 7th order harmonics, is 
connected to a bus having a short circuit power 25 times 
higher than the load active power. The power factor for the 
fundamental frequency is λ1=0.707. All inductors’ q-factors 
are equal to 50 at the tuned frequency, and the reactance to 
resistance ratio of the supply is 10.  The load generated 
current harmonics in percent of the fundamental are J2 = 
0.1%, J3 = 5%, J4 = 0.2%, J5 = 17%, J6 = 0.2%, J7 = 11%, J8 = 
0.2%, J9 = 5%. Distribution voltage distortion contains a 
uniform harmonic noise on the level of En = 0.1% of the 
fundamental up to n = 9.  Minimization of the current 
distortion and bus voltage distortion are considered equally 
important, therefore, the weighting factors of equation (15), 
Wi and Wu, are equal to 0.5. The cost function scaled by a 
factor of 10 for convenience in plotting is  
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Figure 2 shows the surface plot of the cost function, fc(x), 
drawn as a function of the reactive power allocation of each 
branch, d1 and d2, in percent of the total filter reactive power.  
Four local minima are visible in the plot within the range 0.1-
0.9 of d1 and d2.  

d1 d2
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Figure 2. Surface plot of the cost function. 

 
A contour plot of the cost function is shown in Figure 3.  The 
plot shows the multiple local minima that are separated by the 
ridges formed when the resonant frequencies and harmonic 
frequencies coincide.  The ridge that runs down the center of 
the plot is formed at the values of d1 and d2 for which a 
resonance is located at the 4th order harmonic as shown in Fig. 
4 (a).   
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Figure 3.  Contour plot of the cost function fc(x). 

 
Figure 4 (b) shows the resonant frequency locations for values 
of d1 and d2 that correspond to a local minimum of fc(x).  At 
this local minimum the resonant frequencies are much further 
from harmonic frequencies. 
 

 
Figure 4.  Resonant bands of amplification for values of d1 

and d2 on a ridge (a) and near a minimum (b) of fc(x). 
 
Although there are four local minima for the cost function, 
fc(x), this function is unconstrained. If full load reactive power 
compensation is required and the reactive power allocated to a 
particular branch cannot be lower than 10% of the filter 
reactive power, then the constrained problem is 
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The constrained cost function will yield a minimum which is 
confined to a line drawn from the top left corner to the lower 
right of the contour plot. The boundary of the plot shown is 
specified by all three constraints.  In this case the minimum 
would be chosen from the best of those local minima that the 
constraint line intersects.  

The presence of multiple minima indicates that a method 
of global optimization is needed.  Since the mechanism that 
causes multiple local minima in the case of this cost function 
is known, it is possible to use the optimization techniques 
described above.  These can be employed by repeated use of 
the routines at starting points near each local minimum.  The 
local minima can then be compared and the global minimum 
identified.   



It should be mentioned that although a particular local 
minimum may be the best with respect to the cost function 
value, it may not be acceptable from the viewpoint of 
sensitivity.  A matrix sensitivity measure could be developed 
based on the behavior of the Hessian matrix for the region 
around the optimal point. 
 

VI. PERFORMACE OF OPTIMIZED FILTERS 
 

A distribution system that supplies a six-pulse controlled 
converter is used as a test system. The converter is supplied 
from a 60 Hz symmetrical three-phase distribution system 
with a short circuit power of 21.2 pu and with a reactance to 
resistance ratio at the fundamental frequency, Xs/Rs equal to 
10. The distorted component of the load generated current, j, 
is composed of the characteristic harmonics of a six pulse 
converter with the RMS value J5 = 18%, J7 = 13%, J11 = 8%, 
and J13 = 7% of the fundamental. The load current also 
contains minor harmonics caused by the thyristor firing 
control asymmetry. The distribution of the minor harmonics 
in the load current is random, it varies from converter to 
converter and also with changes in the firing angle. It is 
assumed for this test system that the minor harmonics in the 
current have a uniform value up to the 12th order harmonic. 
This assumption is further justified by [14] which provides the 
current spectrum of a typical converter and shows minor 
harmonics which are of approximately the same magnitude. 
Harmonics above the 13th order are neglected since they 
cannot be amplified by filter resonance. It is assumed that 
minor harmonics comprise a distorted component of the load 
current, denoted as δjm, equal to 1.5% of the fundamental, i.e., 
of the value Jn=0.53% of the fundamental. The IEEE 
recommended limit for the distortion of the distribution 
voltage e, given in Table 2.2, is δe = 5% of the fundamental. 
Therefore, various levels of voltage distortion up to δe= 5% 
are used to evaluate filters for the range of allowed voltage 
distortion.  The magnitude of the voltage harmonics are 
assumed to decline as 1/n and the even order harmonics have 
a magnitude which is 25% of the odd order harmonics. 
Effectiveness of filters designed according to three strategies 
for this test system is shown in Figure 5. 
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The first filter set, designated RHF-1, is designed according to 
Ref. [1]. The load reactive power compensation is shared 
equally by the four branches. The second filter set, designated 
RHF-2, represents the group of filters designed using a trial 

and error approach which is based on simulation.  
Unfortunately, results of such a strategy would vary according 
to the experience and design philosophies of the filter 
designer.  Therefore, optimization with additional restrictions 
could be performed to simulate the best-case design using the 
trial and error approach. Literature that promotes this 
approach only suggests a slight de-tuning of the filter 
branches from the characteristic harmonic frequencies of the 
load current while all adjustments are performed on the 
branch reactive power allocation.  Therefore, the set RHF-2 is 
designed by applying optimization techniques with the 
additional restriction that the filter’s tuning frequencies may 
be only slightly de-tuned. The third filter set, designated RHF-
3, represents the group of filters designed using the 
optimization approach described in this paper. Both the tuned 
frequencies and the branch reactive power allocation are 
selected by the optimization algorithm. 

VII. CONCLUSIONS  

Resonant harmonic filters designed according to 
traditional methods may have unacceptably low effectiveness 
when installed in systems with a dense harmonic spectrum. In 
order to cope with the complexity of the interaction of the 
filter with the system, optimization based design is needed. 
Results show that optimization based design substantially 
increases the effectiveness of filters in the presence of minor 
harmonics. Finally, although traditional optimization theory 
can be applied successfully to this application care must be 
taken due to the large number of local extrema and the 
generally ill-behaved nature of the cost function.  
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