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Abstract - The paper investigates how power phenomena and 
properties of three-phase systems are described and interpreted 
by the Instantaneous Reactive Power (IRP) p-q Theory.  

The paper demonstrates that this theory misinterprets power 
properties of electrical systems or provides some results that at 
least defy a common sense or meaning of some notions in 
electrical engineering. For example, it suggests the presence of an 
instantaneous reactive current in supply lines of purely resistive 
loads and the presence of an instantaneous active current in 
supply lines of purely reactive loads. Moreover, it suggests that 
line currents of linear loads with sinusoidal supply voltage 
contain a nonsinusoidal component.  

The paper shows moreover that the IRP p-q Theory is not 
capable to identify power properties of three-phase loads instan-
taneously. A pair of instantaneous values of p and q powers does 
not allow us to conclude whether the load is resistive, reactive, 
balanced or unbalanced. It is known that a load imbalance 
reduces power factor. However, the IRP p-q Theory does not 
identify the load imbalance as the cause of power factor 
degradation. 

Key words – Powers, p-q theory; currents’ physical components, 
CPC, switching compensators, active power filters, unbalanced 
systems, power theory.  

I. INTRODUCTION 
The Instantaneous Reactive Power (IRP) p-q Theory is 

based on the Clarke Transform of voltages and currents in 
three-phase systems into α and β orthogonal coordinates. Its 
development was a response [3] to “...the demand to instanta-
neously compensate the reactive power...” Originally, this 
theory was formulated by Akagi, Kanazawa and Nabae [1, 2] 
for the active power filter control. 

Power properties of three-phase systems are described by 
the IRP p-q Theory in two orthogonal α and β coordinates in 
terms of two, p and q instantaneous powers. They are referred 
to [3] as the instantaneous real and the imaginary powers or 
more commonly [4-6], as the instantaneous active and reac-
tive powers. According to Authors’ of Ref. [3] claim: “…the 
instantaneous imaginary (reactive) power q was introduced 
on the same basis as the conventional real power p in three-
phase circuits and then the instantaneous reactive power in 
each phase was defined with the focus on the physical 
meaning and the reason for naming…”  Because of it, the IRP 
p-q Theory has become a very attractive theoretical tool not 
only for the active power filter control [3-6], but also for 
analysis and identification [7-12, 18] of power properties of 
three-phase systems with nonsinusoidal voltages and currents.  
------------------------------------------- 
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As long as the IRP p-q Theory is considered only as a 
control algorithm then, the interpretation of power phenomena 
as suggested by this theory is irrelevant. It is sufficient for an 
algorithm to be acceptable that it enables us to reach the 
control objectives. However, to be considered as a power the-
ory, the IRP p-q Theory should also satisfy other expectations. 
First, it should provide a credible interpretation of power 
properties and phenomena in power systems. 

Power properties of three-phase systems are expressed by 
the IRP p-q Theory in terms of only two, active and reactive, 
p and q, powers, while power properties of such systems, even 
without any harmonic distortion, depend on three independent 
phenomena. These are: (i) permanent energy transmission, (ii) 
the voltage and current phase shift and (iii) line current 
asymmetry due to the load imbalance. These phenomena are 
characterized by the active, reactive, and unbalanced powers, 
P, Q and D. These powers specify [14] the apparent power: 

2 2 2S P Q D= + + ,                               (1) 

and consequently, power factor, λ = P/S. The number of 
power quantities in the IRP p-q Theory can make one suspi-
cious that this theory does not characterize power phenomena 
in three-phase unbalanced systems correctly. One might sug-
gest that this major deficiency of the IRP p-q Theory could be 
overcome by combining the Q and D powers into a single 
power quantity. Unfortunately, this would be only an apparent 
solution. The reactive power Q is a measure of the effect of 
the current phase shift on the apparent power S, while the 
unbalanced power D is a measure of the effect of the load 
imbalance on this power. Thus, these two powers are associ-
ated with quite different phenomena in electrical loads. 

The IRP p-q Theory has been developed for three-phase 
systems with nonsinusoidal voltages and currents. However, if 
a theory is true at distorted waveforms, it has to provide 
credible results also when applied to systems with sinusoidal 
voltages and currents, because such systems form a sub-set of 
systems with distorted waveforms. Therefore, this paper 
investigates only how does the IRP p-q Theory describe 
power properties of linear, three-phase, three-wire systems 
with sinusoidal voltages and currents. Results obtained using 
the IRP p-q Theory are compared with results obtained using 
the Currents’ Physical Components (CPC) Power Theory, 
developed [13-15] for three-phase systems under nonsinusoi-
dal conditions. 

II. OUTLINE OF THE IRP p-q THEORY 

To avoid any confusion between symbols used for the 
active current as defined in Ref. [16] and denoted by ia, and 



the line current of phase “a”, as well to be in accordance with 
symbols used in Refs. [13-15], the phase indices R, S and T 
are used in this paper, instead of a, b, and c, it means, voltages 
and currents are denoted as shown in Fig. 1. 

 
Fig. 1. Three-phase, three-wire system 

The Clarke’s Transform of phase voltages to the α and β 
coordinates has the form: 
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It is assumed that line voltages (uR, uS, uT) are referenced 
to an artificial zero, i.e., uR + uS + uT = 0. At such a condition, 
the Clarke’s Transform of phase voltages can be simplified to 
the form 
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Similarly, in three-wire systems iR + iS + iT = 0, thus, the 
Clarke’s Transform of the line currents has the form 
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With voltages and currents transformed to the α and β coor-
dinates, the instantaneous active (real) power is defined, 
according to Ref. [3], as 

p = u i u iα α β+ β ,                             (5) 
and the instantaneous reactive (imaginary) power as  

q = u i u iα β β α− .                             (6) 
With these two, p and q, instantaneous powers, instantaneous 
active, and reactive currents are defined. The instantaneous 
active current, ip, is defined in the α and β coordinates as 
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and the instantaneous reactive current, iq, in the α and β coor-
dinates is defined as 
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Line currents can be obtained from currents in the α and β 
coordinates with the inverse Clarke’s Transform: 
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thus, active and reactive currents in supply lines are equal to 
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Illustration 1a. Let us apply the IRP p-q Theory to a circuit 
with a resistive load as shown in Fig. 2, assuming that the load 
is supplied from a symmetrical source of a sinusoidal, positive 
sequence voltage, with 

uR = 2 U cos ω1t,       U = 277 V,                (11) 
assuming that the Δ/Y transformer is a loss-less, ideal trans-
former with the turn ratio 1:1. 

 
Fig. 2. Example of circuit with resistive load 

With such assumptions, the Clarke’s Transform of phase vol-
tages results in 
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The line currents,  
iR = 2 I cos (ω1t + 300) = - iS,      I = 119.9 A,      iT= 0, 

could be transformed to  
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Thus, the instantaneous real power of such a load is equal to 
0

13 [1 cos 2( 30 )]p u i u i U I tα α β β ω= + = + + ,   (14) 

and the instantaneous reactive power,  
0

13 sin 2( 30 )q u i u i U I tα β β α ω= − = − + .           (15) 

Since instantaneous reactive power, q, of the load is not 
equal to zero hence, according to the IRP p-q Theory, a reac-
tive current occurs in supply lines. Its value in the α and β 
coordinates is equal to 

0
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Having these values, the inverse Clarke’s Transform results in 
the reactive current in supply lines, namely 
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One could expect that only an active current could occur 
in a purely resistive, linear circuit. However, according to the 
IRP p-q Theory, in spite of the lack of any reactive elements 
in the load and consequently, zero reactive power, Q, there is 
a reactive current in supply lines. It means that the reactive 
current in the IRP p-q Theory cannot be associated with the 
reactive power, Q, of the load. It occurs in supply lines even 

⎤
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of purely resistive loads. It means that results of the IRP p-q 
Theory deny a common meaning of a reactive current. Also, 
observe that all currents in linear circuits with sinusoidal sup-
ply voltage are sinusoidal. However, when the IRP p-q The-
ory is applied for calculating the instantaneous active current 
of the load in the α and β coordinates, then 
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Having the active current in the α and β coordinates, its value 
in the load supply lines can be calculated, namely 
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This active current is not sinusoidal, however. Its waveform in 
line R can be expressed in the form  

0
Rp 1 1 1[2cos cos ( 60 ) cos (3 60 )]

6
Ii t tω ω ω= + + + + 0t ,   (22) 

thus, it contains the third order harmonic. Thus, the IRP p-q 
Theory suggests a phenomenon that does not exist in the 
circuit. This conclusion obtained from the IRP p-q Theory, 
also observed by Willems [17], is in an evident contradiction 
to a common meaning of the active current [16, 19] that was 
introduced to electrical engineering by Fryze in 1932. The 
active current is the current component proportional to the 
supply voltage and of the value indispensable for providing 
the load active power P. The active current is defined as 

a 2|| ||
Pi

u
= u ,                                (23) 

where ||u|| denotes the supply voltage rms value. Fryze’s defi-
nition of the active current was generalized in Ref. [14] for 
three-phase systems as follows, 
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where ||u|| denotes the rms value of the supply three-phase 
voltage, that means,  

2 2
R S T|| || = || || || || || ||u u u+ +u 2 .                 (25) 

Thus, the active current in three-phase systems with a sinusoi-
dal supply voltage is sinusoidal.  

The main properties of the active current, for which the 
concept of this current is so important for power theory and 
compensation, are summarized [17] by Willems: “The active 
current is hence a current which yields the same average (i.e. 
active) power as the load current. It is the current with the 
smallest rms value having this property, and hence it realizes 
the lowest line losses and the largest power factor.” The 
instantaneous active current that results from the IRP p-q 
Theory does not have any of these properties. Unlike the 
active current defined by Fryze, it is not the current that 

should remain in supply lines after total compensation of the 
load, that means to unity power factor. Indeed, the active 
current in the IRP p-q Theory has nothing in common with the 
meaning of the active current as it has been known in electri-
cal engineering since 1932 when this concept was introduced 
by Fryze. It is a quite different quantity, but its name, i.e., “the 
instantaneous active current” may cause a confusion, 
especially since formula (24) also specifies the instantaneous 
values of the active current.  
Illustration 2a. Let us apply the IRP p-q Theory to the circuit 
shown in Fig. 3 with a purely reactive load, assuming that it is 
supplied like the load in Illustration 1a, thus, with the voltage 

 
Fig. 3. Example of three-phase circuit with purely reactive load 

in the α and β coordinates specified by formula (12). The line 
currents in such a circuit are equal to 

iR = 2 I cos(ω1t - 600),   iS = - iR,  iT = 0,  I = 119.2 A, 
and could be transformed to 
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Thus, the instantaneous real and imaginary powers are  
0

13 cos (2 30 )p u i u i U I tα α β β ω= + = − .             (27) 
0

13 [1 sin (2 30 )q u i u i U I tα β β α ω= − = − + − ] .   (28) 
In spite of zero active power, there is a non-zero active current 
in the circuit. Its value in the α and β coordinates is equal to 
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and in the phase coordinates this current is equal to 
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In particular, this current in line R is  
0 0

Rp 1 1[cos( 30 ) + cos(3 30 )]
6

Ii t tω ω= − − .        (32) 

One could expect that only a reactive current could occur 
in a purely reactive, linear circuit. However, according to the 
IRP p-q Theory, in spite of the lack of any resistive elements 
in the load and consequently, zero active power, P, there is an 
active current in supply lines. It means that results of the IRP 
p-q Theory deny the common meaning of both the active and 



reactive currents. Moreover, these currents are nonsinusoidal 
even if there is no source of harmonics in the supply source 
and the load.  
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Let us compare these results obtained from the IRP p-q 
Theory with results of analysis of power properties of circuits 
considered in Illustrations 1a and 2a using the Currents’ 
Physical Components (CPC) Power Theory. 

III. OUTLINE OF THE CPC POWER THEORY 

The Currents’ Physical Components (CPC) Power Theory, 
developed in Ref. [13] for three-phase, three-wire systems 
under nonsinusoidal conditions, is used in this paper as a refe-
rence for analysis of properties of the IRP p-q Theory, when it 
is applied to systems under sinusoidal conditions. Therefore, 
only these elements of the CPC Theory that are needed for 
describing three-phase, three-wire systems under sinusoidal 
conditions are outlined in this Section. 

A linear load as shown in Fig. 4, supplied with a symmet-
rical sinusoidal voltage, with line-to-line admittances YRS, YST  

 
Fig. 4. Three-phase load 

and YTR can be characterized by equivalent admittance 
RS ST TRe e e = + = G jBY Y Y+ +Y

= U

,                     (33) 
and unbalanced admittance 
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then, the line currents of the load, arranged into a vector  
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can be decomposed into three components, namely 

a r u= + +i i i i ,                                (37) 
where  

1a e2 Re{ }j tG e ω= Ui ,                       (38) 
is the active current,  

1r e2 Re{ }j tjB e ω= Ui ,                      (39) 
is the reactive current and  

1u 2 Re{ }j t#eA ω= Ui ,                       (40) 
is the unbalanced current. These three components of the load 
line currents are associated with distinctive power related phy-
sical phenomena. Therefore, these currents are referred to as 
currents’ physical components. 

The active, reactive and unbalanced current, ia, ir and iu, 
are mutually orthogonal [13] thus, rms values of these three 
currents fulfill the relationship 

2 2 2
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Multiplying this equation by the square of the supply voltage 
rms value, ||u||, the power equation  

2 2 2S P Q D= + + ,                               (42) 
can be obtained, where 

r= || || || ||Q ⋅u i ,      ,                     (43) u= || || || ||D ⋅u i

are the reactive and unbalanced powers, respectively.  
Let us apply the CPC Theory to circuits analyzed previo-

usly in Illustrations 1a and 2a using the IRP p-q Theory. 
Illustration 1b. Since line-to-line admittances of the load are: 
YRS = 0.25 S; YST = YTR = 0, formula (33) results in the equi-
valent admittance,  

RS ST TRe e e= +G jB .Y Y Y Y 0 25 S+ = + = ,             (44) 

and formula (34) results in the unbalanced admittance 
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thus, the active current of the load is equal to 
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Since equivalent susceptance BBe of the load considered is 
equal to zero, the reactive current does not occur in the load 
supply lines. The unbalanced current is equal to 
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Indeed, the sum of the active and unbalanced currents is equal 
to the line current of the load, namely 
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Thus, the supply current cannot contain any component other 
than the active and unbalanced currents. The rms value of 
three-phase active and unbalanced currents is equal to, res-
pectively  

a|| || = 69.2 3 = 119.9 Ai ,   u|| || = 69.2 3 = 119.9Ai ,   (49) 

while the rms value of the three-phase supply current is  
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Since || || = 277 3 V,u  the load powers are equal to 
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These results are in an evident accordance with the fact that 
the load in Illustration 1 does not contain any reactive com-
ponent and it is unbalanced. Unfortunately, the IRP p-q 
Theory does not have any power quantity associated with the 
load imbalance, although it contributes to the apparent power 
increase. Instead, the load imbalance causes, according to the 
IRP p-q Theory, that a reactive current occurs apparently in 
the supply current, even if the load has zero reactive power.  
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Illustration 2b. Since line-to-line admittances of the load are: 
YRS = - j¼ S, YST = YTR = 0, formula (33) results in the 
equivalent admittance,  
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and formula (34) results in the unbalanced admittance 
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thus, the active current does not occur in the supply current. 
The reactive current is 
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The unbalanced current is equal to 
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Indeed, the sum of the reactive and unbalanced currents is 
equal to the line current of the load, namely 
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Thus, the supply current cannot contain any component other 
than the active and unbalanced currents. The rms value of 
three-phase reactive  and unbalanced currents  is equal to, res- 
pectively,  

r|| ||= 69.2 3 =119.9Ai ,   u|| ||= 69.2 3 =119.9Ai ,     (58) 
while the rms value of the three-phase supply current is  

R S
2 2 2 2

r u|| || = + || || + || || 169.6 AI I = =i i i .         (59) 

Since || || = 277 3 V,u  the load powers are equal to 
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These results are in a full accordance with the fact that the 
load in Illustration 2 is purely reactive and unbalanced. 
However, according to the IRP p-q Theory, the load imba-
lance causes that an active current apparently occurs in the 
supply current. 

IV. INSTANTANEOUS IDENTIFICATION OF POWER 
PROPERTIES 

The attractiveness of the IRP p-q Theory in electrical 
engineering community is due to the opinion, expressed by 
authors of this Theory [3], that it enables an instantaneous 
identification of power properties of the load and consequent-
ly, instantaneous compensation of the reactive power. Let us 
check whether such an instantaneous identification is possible 
or not.  

Indeed, the p and q powers could be known only with a 
delay needed for calculation, after samples of voltages and 
currents are provided by a measuring system. Does it mean, 
however, that power properties of the load are identified the 
same moment when these two powers are calculated?    

To answer this question, let us return to results of Illus-
tration 1a. According to formulae (14) and (15), instantaneous 
values of powers p and q taken at the instant of time such that 
2(ω1tk + 300) = 900, are mutually equal, with only the opposite 
sign, i.e., pk = - qk. According to formulae (27) and (28), such 
a situation that pk = - qk can also occur in the circuit con-
sidered in Illustration 2a, namely, at such an instant of time 
that 2ω1tk - 300 = 0. It means that the same pair of samples of 
the p and q powers can occur in a purely resistive and purely 
reactive loads. Thus, power properties of the load cannot be 
specified instantaneously in terms of the instantaneous active 
and reactive, p and q, powers. A sequence of measurements of 
the load voltages and currents, usually over period T, is 
needed to specify power properties of a load.  

V. CONCLUSIONS 
The paper demonstrates that the IRP p-q Theory, when 

applied to three-phase systems with sinusoidal voltages and 
currents, provides results that defy common comprehension of 
power properties of such systems. It is because the IRP p-q 
Theory suggests that 

(i) An instantaneous reactive current can occur in supply 
lines of purely resistive loads.  

(ii) An instantaneous active current can occur in supply 
lines of purely reactive loads. 

(iii) A distorted current component can exist in supply 
currents of a linear load supplied with sinusoidal voltages.  



Moreover, a pair of p and q powers calculated at some 
instant of time does not provide information on power pro-
perties of three-phase loads. No conclusions can be drawn 
with respect to the load power properties. The knowledge of 
these two powers does not allow us to answer the question: is 
this load active, reactive, balanced or unbalanced? 

The main deficiency of the IRP p-q Theory results from 
the fact that three independent power phenomena, i.e., perma-
nent energy transmission associated with the active power, P, 
phase-shift associated with reactive power, Q, and supply 
current asymmetry associated with unbalanced power, D, are 
described by the IRP p-q Theory in terms of only two powers, 
p and q. Two powers cannot characterize three independent 
power phenomena.  

Misinterpretations of power phenomena in three-phase 
systems, caused by the IRP p-q Theory, could be to some 
degree attributed to names of currents, referred to as the ins-
tantaneous active and reactive currents, that were earlier used 
[16] in electrical engineering for currents defined in a dif-
ferent meaning. However, even if these names are modified, 
the main deficiency of this Theory will remain. The IRP p-q 
Theory does not provide any information as to reasons of the 
apparent power S increase and the power factor decline. Does 
this power increase due to the presence of reactive compo-
nents in the load or due to its imbalance? It is an intrinsic 
deficiency of this Theory.  

The IRP p-q Theory was developed for three-phase sys-
tems under nonsinusoidal conditions. Unfortunately, it has a 
number of deficiencies, as compiled above, even when it is 
applied to a relatively simple, sinusoidal situation, where the 
power phenomena are known. These deficiencies could be 
considered as irrelevant when the IRP p-q Theory is used as 
the fundamental for a switching compensator control algo-
rithm, but not when it is considered as a power theory, it 
means, as a theoretical tool that explains power phenomena 
and properties of electrical systems.  
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