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Abstract: The Poynting Vector (PV) and Poynting Theorem (PT) 
are fundamental mathematical tools for calculating energy flow, 
its dissipation and storage in electromagnetic fields. Therefore, 
there are opinions that power properties of power systems should 
be described in terms of the PV and PT. The paper investigates 
whether the PV and PT provide an explanation of power proper-
ties and whether they enable calculation of powers in three-phase 
systems or not.  

It is demonstrated in the paper that only the instantaneous 
power and active power can be expressed in terms of the PV, but 
not the reactive, apparent and unbalanced powers as well as the 
power factor. Consequently, the PV and PT do not provide infor-
mation useful for physical interpretations of power properties of 
power systems. Also, they are useless for practical applications of 
power theory to power system problems, such as compensation. 
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I. INTRODUCTION 

Power properties of power systems are specified in terms 
of various powers. These powers provide information needed 
for system design, evaluation of its performance, control, ener-
gy accounts or compensator design. In the case of three-phase 
three-wire systems under sinusoidal conditions, the active, 
reactive and the apparent powers form a basic set of power 
quantities. The unbalanced power has to be added to this set [8 
] in the case of the load imbalance. These powers are next 
used for defining power features of a second level such as, for 
example, power factor, installed power, or demanded power. 
More powers are needed for describing power properties of 
systems under nonsinusoidal conditions; with supply voltage 
asymmetry or systems with fast time-variant loads.  

The set of power definitions, their relationship, physical 
interpretations, fundamentals of energy accounts and compen-
sation are considered as a power theory of electrical systems. 
Its development started when it was observed that the apparent 
power, S, i.e., the product of the voltage and current RMS 
values, could be higher than the load active power, P. 

The subject and objectives of power theory of electrical 
systems are not well defined. However, an overview  of nume- 
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rous publications on power theory shows that the area of 
interest and the main objectives of this theory could be 
compiled as follows:  
(i)   Explanation of power properties of power systems and in 

particular, explanation of physical phenomena that cause 
an increase of the apparent power above the active power 
of the load. 

(ii)  Definition of powers and specification of power related 
data needed for selecting power ratings and design of 
equipment for energy transmission and distribution. 

(iii) Providing data on the effectiveness of energy delivery to 
customers, i.e., data on the load power factor. It is needed 
for fair energy accounts between energy suppliers and 
customers. 

(iv) Providing fundamentals for power factor improvement by 
compensation of useless or harmful components of the 
supply current. 

The Poynting Vector (PV) is a fundamental concept of 
electromagnetic field theory with respect to energy flow. It is 
used extensively in such problems as energy radiation by 
antennas and other radiating high frequency devices with 
distributed parameters. Therefore, in recent discussions [1, 2] 
on definitions and interpretations of powers in systems with 
nonsinusoidal voltages and currents, i.e., in discussions on 
power theory development, the PV is increasingly often 
referred to as the very fundamental of this theory. There are 
even suggestions that the Poynting Vector should be applied 
as a basis for power quality evaluation.  

Electromagnetic fields are specified in terms of space 
distribution of electric and magnetic field intensities. The 
Poynting Vector is defined as their vector product, namely 

P E H= ×
G G G

,                                    (1) 

where E
G

denotes the electric field intensity, while H
G

 denotes 
the magnetic field intensity. The PV is interpreted as the 
surface density of the rate of energy flow. Its direction is 
perpendicular to the surface specified by vectors of the electric 
and magnetic fields intensities. 

Suggestions that the Poynting Vector concept should be 
considered as the very fundamental of the power theory [3] 
stem from the fact that the flux of this vector to volume V 
through its surface S is equal to the rate of energy W flow to 
this volume, i.e., to the instantaneous power, p(t) = dW/dt, of 
all devices confined by the surface S. Indeed, let us assume 
that electric energy is delivered to a load exclusively by its 
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three-phase, three-wire supply lines, with the supply terminals 
denoted by R, S and T, line-to-ground voltages uR, uS and uT 
and line currents iR, iS and iT, as shown in Fig. 1. 

 
Fig.1. Three-phase load confined by surface S 

The flux of the Poynting Vector through surface S, that cros-
ses the supply lines only once, in such a case is equal to 

R R S S T T
S

( )p td u i u i u iP S + + =• =∫∫
GG

w .               (2) 

Direct relation of the Poynting Vector to Maxwell equa-
tions, fundamental equations of electrical engineering, and to 
energy flow, its storage and dissipation in electromagnetic 
fields make the claim that power theory should be founded on 
the PV very appealing.  

The objective of this paper is to investigate whether power 
theory could really be founded on the Poynting Vector or not. 
The answer to the question: Could power properties of three-
phase systems be interpreted and described in terms of the PV 
and the PT? is of major importance for this investigation. 

II. POWERS AND FLOW OF ENERGY  

When power properties of electrical systems and power 
theory are discussed, the very first impression is that the 
energy flow is the main subject of this theory. Indeed, the 
instantaneous and the active powers, p(t) and P, are clearly 
related to the flow of energy and these powers are the main 
quantities of power theory. However, a closer insight into 
issues of power theory shows that the main questions of this 
theory are not focused on the active power, but rather on the 
difference between this power and the apparent power.  

One could say, that this difference, i.e., the reactive power 
in three-phase balanced systems, occurs because of oscilla-
tions of energy thus, it is related to the flow of energy. 
However, the instantaneous power, i.e., the rate of energy 
flow, p(t) = dW/dt, between a three-phase supply source and 
the load in three-phase balanced systems is constant, indepen-
dently of the reactive power Q value. Thus, the presence of the 
reactive power in three-phase systems cannot be explained [4] 
in terms of energy oscillation between the supply source and 
the load. It could be even demonstrated [5] that also in single-
phase circuits the reactive power can occur when loads are 
purely resistive, i.e., with no energy storage and no oscillation 
of energy between the supply and the load.  

Consequently, the difference between the active and the 
apparent power, i.e., one of the major subjects of interest of 
power theory, cannot be explained in terms of energy flow. 
Moreover, there is no relationship between the apparent power 
S and energy flow. The apparent power S is a conventional 
quantity but not a physical quantity. This power in single-
phase systems is defined as a product of voltage and current 
RMS values. There are a few different conventions with res-
pect to the apparent power definition in three-phase systems. 

This means, that there is no physical phenomenon that is 
characterized by the apparent power. Long ago, in 1931, Fryze 
demonstrated [6] that the apparent power, S, can occur even in 
circuits with no flow of energy.  

On the other hand, the PV and PT are focused entirely on 
the flow of energy, its storage and dissipation in electromag-
netic fields. Therefore, the observation that the difference 
between the apparent and the active powers is not related to 
energy flow could make one suspicious about the suggestion 
that power theory could be founded on the Poynting Vector 
and the Poynting Theorem. The subject and objectives of 
power theory are different than only a description of energy 
flow in power systems.  

III. CIRCUIT APPROACH AND FIELD APPROACH  
TO POWER THEORY 

One could say that a field approach, i.e., the approach 
founded on the PV and PT, to power theory is more funda-
mental than that based on a circuit approach. Indeed, circuit 
analysis is only an approximation of electromagnetic field 
analysis, the approximation based on a concept of lumped 
parameters. Unfortunately, such a claim looks to be convin-
cing only as long we do not have to use the field approach for 
detailed calculations.  

Even now, in the age of computers, when powerful tools 
for modeling electric and magnetic fields are available, simpli-
city of calculations and analysis is still important. Computers 
do not supersede us in drawing intellectual conclusions. To 
support such a view, let us observe that the active power of a 
load, i.e., the mean value over period T of the instantaneous 
power, p(t), can be found by calculation of the mean value of 
the Poynting Vector flux over the load boundary, S, namely  

0 0 S

( ) ]1 1 [
T T

p t dt = dtP = dT T P S•∫ ∫ ∫∫
GG

w ,                 (3) 

but first, the electric and magnetic field intensities on the 
surface S have to be calculated. However, in a case of three-
phase loads the same result can be obtained much easier, 
having supply voltages and line currents of the load, when this 
power is calculated from formulae  

R R S S T T
0 0

( ) )1 1 (
T T

p t dt = dtP = u i u i u iT T + +∫ ∫ .               (4) 

Using the field approach, the electric and magnetic field 
intensities on the surface S have to be calculated, while the 
flux of the PV does not even depend on the surface selected. 
Indeed, for common, not radiating loads, such as a motor 
supplied through a three-phase line as shown in Fig. 2, the flux 
of the PV has the same value for boundary S1, S2, or S3, or for 

  
Fig.2. Three-phase loads and a few surfaces for the flux  

of the Poynting Vector calculation 
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any other boundary that confines the load. Only voltages and 
currents at the load terminals affect the instantaneous power, 
i.e., also the flux. Thus, there is no reasonable justification for 
a field approach to calculation of the active power. Only for a 
very simple geometry of the load and isotropic media of the 
space does the Poynting Vector flux provide the instantaneous 
power of the load with a reasonable amount of calculation. 
However, even in such a situation, calculating this flux could 
be considered only as an intellectual exercise for students 
rather than as a scientific approach to engineering problems. 
Geometry of power equipment is not simple and the medium 
is not isotropic and consequently, calculation of the active 
power using the Poynting Vector approach could be very 
toilsome without any visible benefits.  

When a device or its element such as a screen, cover or a 
rotor is not supplied directly by conductors with distinctive 
voltages and currents, the Poynting Vector approach could 
provide a very useful, and perhaps even the only tool for 
energy flow, storage and dissipation analysis. The same is true 
for antennas and other energy radiating devices. However, 
when voltages and currents at the terminals of a device are 
known, and this device could be considered as a lumped RLC 
circuit, then the Poynting Vector approach seems to be 
entirely redundant from the computational point of view. 
Furthermore observe, that voltages and currents are the input 
quantities for power and energy meters.  

IV. PHYSICAL INTERPRETATION  

Even if a field approach to power theory would not be 
justified from computational point of view, the idea of found-
ing this theory on the PV and PT could be acceptable, if the 
Poynting Vector and Theorem would be able to provide us 
with a physical interpretation of power phenomena in elec-
trical systems. Therefore, let us focus our attention on the 
physical context of the PV and the PT and on their cognitive 
merits. 

The Poynting Theorem has the mathematical form 

V V S

( ) (dV dV dt t
B D )E j H E E H∂ ∂• = − • + • − × •

∂ ∂∫ ∫ ∫∫
G GGG G G G G

w S
G

,    (5) 

where  denote vectors of the magnetic and elec-
tric fields induction densities and the current surface density, 
respectively. This Theorem says that energy that enters 
volume V confined by surface S is dissipated over that volume 
and is stored in electric and magnetic fields. This is true, but 
this truth is now rather trivial. It has been a common know-
ledge in electrical engineering for a century. Thus, cognitive 
merits of the Poynting Theorem are not impressive.  

,  andB D j
GG G

This theorem also says how to calculate the rate of energy 
dissipation and storage in the volume V, but again, only when 
this volume is geometrically simple and the medium isotropic, 
are these calculations not very toilsome. For a common power 
system, which is geometrically very complex and medium is 
anisotropic, calculation of the rate of energy dissipation and 
storage is much more efficient when such a system is 
considered as a system with lumped RLC parameters.  

One could say, as it is in the case of Ref. [1, 2], that the 
Poynting Vector provides us with an important physical inter-
pretation relevant to energy flow, as a local surface density, 
dp/dS, of the instantaneous power p(t) flux, i.e., it informs us 

how energy enters volume V. However, such an interpretation 
could be questionable in some situations.  

Consider for example a situation illustrated in Fig. 3, 
where the electric field is created by a charged capacitor while 
the magnetic field is created by a permanent magnet. 

 
Fig. 3. Situation where there is no energy flow,  
while the Poynting Vector is not equal to zero  

There is no, for sure, energy flow in such a situation, although 
the PV is not equal to zero. Thus, it seems that we cannot 
interpret the PV according to its common interpretation as a 
surface power density in such a situation. An expertise in 
electrodynamics is needed for clarification of doubts demon-
strated by the above example. Could we expect that a power 
engineer that should understand power phenomena in power 
systems would have a sufficient expertise in electromagnetic 
fields and vector analysis needed for comprehension of these 
kinds of paradoxes?  

The Poynting Vector describes an energetic aspect of the 
mutual dependence of electric and magnetic fields during 
propagation of electromagnetic waves specified by Maxwell 
equations. There is a common source of the electric and 
magnetic fields when an electromagnetic field propagates 
energy. However, there are numerous situations in power 
systems where sources of magnetic fields are independent of 
sources of electric fields. Motors with permanent magnets, DC 
motors, synchronous generators are just a few examples. It is 
up to experts on electrodynamics, not power engineers to 
interpret the relationship between the Poynting Vector and 
surface power density in such situations. However, even if this 
relationship could be interesting from the point of view of 
energy flow studies, it is irrelevant for power properties at the 
load terminals. These properties are specified in terms of 
powers. Therefore, the relationship between powers and the 
PV is crucial for answering the question: could power 
properties of power systems be described in terms of the 
Poynting Vector and could power theory of such systems be 
founded on this Vector? 

V. CURRENTS’ PHYSICAL COMPONENTS (CPC) 
To demonstrate that power theory cannot be founded on 

the Poynting Vector, this theory does not have to be consider-
ed in its full complexity. It is enough to show that this is not 
possible for power theory of three-phase, three-wire systems 
as shown in Fig. 4, under sinusoidal conditions.  

 
Fig. 4. Three-phase three-wire system 
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It is a common structure of a power system used for energy 
delivery and could be considered as a major subset of all 
three-phase systems. Any conclusion drawn with respect to the 
Poynting Vector approach and power theory of three-phase 
systems under more complex conditions, such as for example, 
under nonsinusoidal conditions, has to be true when such a 
conclusion is applied to this particular subset.  

The power theory of three-phase, three-wire systems 
under nonsinusoidal conditions, referred to as the Currents’ 
Physical Components (CPC) power theory, was presented in 
paper [7]. It could be drafted shortly for sinusoidal conditions 
[8] as follows.  

Any three-phase load in the situation considered has the 
equivalent circuit shown in Fig. 5.  

 
Fig. 5. Equivalent circuit of three-phase,  

static linear load 

It can be characterized by two admittances. Namely, by the 
equivalent admittance 

RS ST TRe e eG + jBY Y Y= = + + Y ,                   (6) 

and the unbalanced admittance 

ST TR RS

2

3( ),    = 1
jj *Ae eA Y Y Y

π
ψ α α α= = − + + .          (7) 

Supply voltages and line currents in three-phase, three-
wire systems can be arranged into three-phase vectors 

R R

S

T T

       
u i
u , i
u i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

u i S ,                           (8) 

and presented in a compact form 

1

R R

S S

T T

2 Re 2 Rej t j t
u
u e
u

U
U
U

1eω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u U ,      (9) 

1 1

R R

S S

T T

2 Re 2 Rej t j t
i
i e
i

I
I
I

eω ω
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i I .        (10) 

Symbols U and I in these formulae denote complex RMS 
(CRMS) values of phase voltages and currents. Three-phase 
vectors can be characterized by a three-phase RMS value. For 
quantity x(t) this three-phase RMS value is defined as 

T
R S T
2 2 2

0

1|| || = ( ) ( )
T

t t dt X X XT = + +∫x x x ,         (11) 

where X denotes the RMS value of phase quantities.  
Having admittances Ye and A, the three-phase vector of 

the line currents can be decomposed into three components, 
namely 

a r u= + +i i i i ,                            (12) 

If the supply voltage of the load is sinusoidal, symmetri-
cal of the positive sequence and the CRMS values of the 
supply voltage, UR, US, and UT, are arranged into three-phase 
vectors 

R R

S T

T S

           #,
U U
U U
U U

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

U = U ,                   (13) 

then, the line current’s components in formula (12) are defined 
as follows 

1
a e2 Re{ }j tG e ω=i U ,                      (14) 

is the active current,  

1
r e2 Re{ }j tjB e ω=i U ,                      (15) 

is the reactive current and  
1

u 2 Re{ }j t#eA ω=i U ,                        (16) 
is the unbalanced current. Since equivalent conductance Ge in 
formulae (6) and (14) is equal to 

2e || ||
PG =
u

,                                   (17) 

the active current ia occurs in supply lines only if there is a 
permanent flow of energy to the load, i.e., if its active power P 
is not equal to zero. 

Equivalent susceptance BBe in formulae (6) and (15) is 
equal to 

2e
|| ||

QB = −
u

,                                   (18) 

thus, the reactive current ir occurs in supply lines only if the 
load has a non-zero reactive power Q, i.e., only if there is a 
phase-shift between the supply voltage and the line current. 

The unbalanced current iu occurs in supply lines only if 
unbalanced admittance A in formula (16) is not equal to zero, 
i.e., when line-to-line admittances YRS, YST and YTR of the load 
are not equal and consequently, there is asymmetry of the line 
currents.  

Components ia, ir and  iu of the line currents occur due to 
distinctive physical phenomena, namely, permanent flow of 
energy, current phase-shift and the line current asymmetry. 
Therefore, these components are referred to as current’s 
physical components. These three currents are mutually ortho-
gonal and consequently, their RMS values fulfill the relation-
ship  

2 2 2
a r u|| || = || || + || || + || ||i i i i 2 ,                      (19) 

where  
a e|| || || ||G=i u ,    r e|| || || |||B |=i u ,    .    (20) u|| || || ||A=i u

2

A

The power equation of such a system is obtained by multi-
plication of eqn. (19) by the square of the supply voltage RMS 
value, ||u||. It has the form  

2 2 2S P Q D= + + .                           (21) 
In this equation 

2 2
a e r e|| || || || = || || ,    || || || || = - || || , P G Q B= ⋅ = ± ⋅u i u u i u  (22) 

are the active and reactive powers, while  
2

u|| || || || = || ||D = ⋅u i u ,                        (23) 

is the unbalanced power of the load.  
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Observe, that the apparent power S in power equation (21) is 
not defined according to conventional definitions as  

R R S S T TS = U I U I U I+ + ,                         (24) 

or  
2 2S P Q= + .                                (25) 

It is defined as a product of three-phase RMS values of the 
supply voltage and the line current, 

|| || || ||.S = ⋅u i                                  (26) 

It was demonstrated in paper [5] that definitions (24) and (25) 
when applied to unbalanced systems, do not result in a correct 
value of the apparent power of the supply and the load power 
factor, λ = P/S.  

Only the active, reactive and unbalanced currents have 
clear physical interpretations in the CPC power theory. Reac- 
tive and unbalanced powers, like the apparent power S in 
single-phase systems, are defined only as products of voltage 
and current RMS values. Nonetheless, even these powers are 
associated with distinctive power phenomena in the system.  

VI. POWERS AND THE POYNTING VECTOR 

If indeed the PV and PT approach can be considered as 
fundamental for power theory, the PV should provide 
information on powers and on their relation specified by the 
power equation. Thus, let us try to answer the question: could 
powers in three-phase systems be expressed in terms of the 
Poynting Vector? An affirmative answer to this question is 
crucial for the thesis that power theory could be based on the 
Poynting Vector.   

To answer this question, let us consider a balanced load 
shown in Fig. 6, supplied with a symmetrical sinusoidal 
voltage of the positive sequence, with line R-to-ground vol-
tage R 2 cosu U tω= . 

 
Fig. 6. Balanced RL load 

The unbalanced current of such a load, iu = 0, thus, the flux of 
the Poynting Vector through surface S is equal to the active 
power. It means, it is constant, because 

T T T
a r a

S

( ) = ( )p td PP S• = = + = =∫∫ u u ui i i i
GG

w ,        (27) 

since  

T

T

0 0
r r

0 0

0 0
r

cos sin
2 cos( 120 ) 2 sin( 120 ) =    (28)

cos( 120 ) sin( 120 )

[sin2 sin(2 120 ) sin(2 120 )] 0

t t
U t I t

t t

UI t t t .

ω ω
ω ω
ω ω

ω ω ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

= + + + − ≡

u i
 

The same value of the Poynting Vector flux is obtained, of 
course, when the load is purely resistive, as shown in Fig. 7. 

 
Fig. 7. Balanced resistive load 

It means that the loads in Fig. 6 and in Fig. 7, different with 
respect to reactive and apparent powers, Q and S, and power 
factor λ,  cannot be distinguished in terms of the Poynting 
Vector flux through the surface S. Thus, there is no relation-
ship between the flux of the Poynting Vector through a surface 
that encloses a three-phase load and the reactive power Q of 
such a load.  

In single-phase systems under sinusoidal conditions, when 
the supply voltage and current are specified in terms of 
complex RMS values U and I, the notion of the complex 
apparent power can be introduced. It is defined as  

j *Se P + jQS U Iϕ= = = .                      (29) 

Using such an approach, the electric and magnetic field 
intensities and consequently, the Poynting Vector, could be 
specified as complex vectors. The flux of the imaginary part of 
the Poynting Vector is equal to the reactive power thus, there 
is a relation between this vector and the reactive power, Q. 
Unfortunately, all attempts aimed at application of such an 
approach to nonsinusoidal systems or three-phase unbalanced 
systems have failed. Such attempts have resulted in erroneous 
definitions of reactive and apparent powers and in erroneous 
power equations. Moreover, such an approach did not reveal 
the presence of the unbalanced power, D, in the power 
equation. Therefore, there is no ground for extrapolation of the 
relationship between the Poynting Vector and the reactive 
power, valid in single-phase sinusoidal systems, to a similar 
relationship in nonsinusoidal and three-phase unbalanced 
systems.  

Also, observe that the presence of a non-zero Poynting 
Vector around a conductor does not indicate that energy 
delivery is associated with such a conductor. The magnetic 
field intensity H

G
around the R conductor in the circuit shown 

in Figure 8 depends on the conductors’ geometrical configura-
tion and could be of the same order as to the magnitude as that 

 
Fig. 8. Unbalanced resistive load 

around the remaining S and T conductors and it is perpendicu- 
lar to the electric field intensity E

G
between supply lines. Thus, 

the Poynting Vector depends on the supply voltage uR and 
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could have any value, without affecting the energy flow, 
dependent only on the voltage difference uS – uT and the load 
resistance R. Nothing changes with respect to this flow when 
the voltage uR changes. Energy flow depends only on the total 
flux of the Poynting Vector through the surface that encloses 
the load, but this is only the conventional instantaneous power 
p(t) of the load and nothing else. In particular, there is no 
relation of the Poynting Vector with the unbalanced power, D, 
the only power that, apart from the active power, P, charac-
terizes the load shown in Figure 8.  

It should be noticed at this point that there is little hope 
that the apparent, reactive and unbalanced powers could be 
related to the Poynting Vector. To justify such an opinion, let 
us consider, for example, the apparent power. According to 
conclusions presented in papers [5] and [7], the apparent 
power in three-phase, three-wire systems should be defined by 
formula (26), i.e., as the product of RMS values of three-phase 
voltage and current vectors. For systems with sinusoidal 
voltages and currents, this formula can be simplified to the 
form 

R S T R S T
2 2 2 2 2 2S U U U I I I= + + + +i .                    (30) 

Let us suppose that the supply source is ideal, i.e., the supply 
voltages are independent of the supply current. In such a case, 
one of two factors that specify the apparent power  

R S T
2 2 2|| || = U U U+ +u ,                          (31) 

is independent of the magnetic field intensity, H
G

, thus it is 
independent of the Poynting Vector, P

G
. It means that the 

apparent power cannot be expressed in terms of the Poynting 
Vector. Similarly, the reactive and unbalanced powers also 
cannot be expressed in terms of the PV. Therefore, the flux of 
the Poynting Vector over a load boundary, which provides 
only information on the load instantaneous power, does not 
provide information on the apparent, reactive and unbalanced 
powers of three-phase loads.  

VII. CONCLUSIONS 

The suggestion that power theory should be founded on 
the Poynting Vector was analyzed in this paper. It was con-
cluded from this analysis that the PV does not provide any 
information on power properties and power related pheno-
mena in power systems other than on the instantaneous and 
the active powers. The apparent, reactive and unbalanced 
powers cannot be expressed in terms of the PV. Consequently, 
power theory cannot be founded on the concept of the 
Poynting Vector and its properties. Also, the Poynting Vector 
and its flux do not provide any information useful for 
interpretation of power properties of electric circuits and for 
practical applications of power theory in electrical systems.  

The Poynting Theorem and the Poynting Vector are 
fundamental mathematical tools for calculating energy flow, 
its storage and dissipation in electromagnetic fields. Their 
applications in various areas of electrical engineering are 
countless. However, the PV and PT fail to contribute to the 
power theory, mainly because this theory is based not only on 
physical phenomena, such as energy flow, but also on conven- 
tional quantities, such as the apparent power or the power 
factor. The difference between the active and apparent powers 
cannot be related and explained in terms of the Poynting 

Vector. The same is true for reduction of this difference by 
means of a compensator. 

REFERENCES 

[1]. Z. Cekareski and A.E. Emanuel, (2001) “Poynting Vector and the 
power quality of electric energy,” European Trans. on Electrical 
Power, ETEP, vol. 11, no. 6, pp. 375-382. 

[2]. Z. Cekareski and A.E. Emanuel, (1999) “On the physical meaning 
of nonactive powers in three-phase systems,” Power Engineering 
Review, IEEE, vol.19, no.7, pp. 46-47. 

[3]. A. Ferrero, S. Leva, A.P. Morando (2001) “An approach to the 
non-active power concept in terms of the Poynting-Park Vector.” 
European  Trans. on Electrical Power, ETEP, vol. 11, no. 5: 301-
308. 

[4]. L.S. Czarnecki, (1994) “Misinterpretations of some power proper-
ties of electric circuits,” IEEE Trans. on Power Delivery, vol. 9, 
no. 4, pp. 1760-1770. 

[5]. L.S. Czarnecki, (1999) “Energy flow and power phenomena in 
electric circuits: illusions and reality. Archiv für Elektrotechnik,” 
(82), no. 4, pp. 10-15. 

[6]. S. Fryze, (1932) “Active, reactive and apparent powers in electri-
cal circuits with distorted voltage and current waveforms.” ETZ, 
no. 7: 193-203, no. 8: 225-234, no. 22, pp. 673-676. 

[7]. L.S. Czarnecki, (1988) “Orthogonal decomposition of the current 
in a three-phase non-linear asymmetrical circuit with nonsinu-
soidal voltage,” IEEE Trans. IM., Vol. IM-37, No. 1, pp. 30-34. 

[8]. L.S. Czarnecki, (1995) “Power related phenomena in three-phase 
unbalanced systems,” IEEE Trans. on Power Delivery, Vol. 10, 
No. 3, pp. 1168-1176. 

[9]. L.S. Czarnecki, (2000) “Harmonics and power phenomena,” 
Wiley Encyclopedia of Electrical and Electronics Engineering, 
John Wiley & Sons, Inc., Supplement 1, pp. 195-218. 

[10]. L.S. Czarnecki, (2004) “On some misinterpretations of the 
Instantaneous Reactive Power p-q Theory,” IEEE Trans. on 
Power Electronics, Vol. 19, No.3, pp. 828-836. 

BIOGRAPHY 

Leszek S. Czarnecki (F’96), Alfredo M. 
Lopez Distinguished Professor, received 
the M.Sc. and Ph.D. degrees in electrical 
engineering and Habil. Ph.D. degree 
from Silesian University of Technology, 
Gliwice, Poland, in 1963, 1969 and 
1984, respectively, where he was 
employed as an Assistant Professor. 
Beginning in 1984 he worked for two 
years at the Power Engineering Section, 
Division of Electrical Engineering, 
National Research Council (NRC) of 

Canada as a Research Officer. In 1987 he joined the Electrical 
Engineering Dept. at Zielona Gora University of Technology, Poland. 
In 1989 Dr. Czarnecki joined the Electrical and Computer Engineering 
Dept. at Louisiana State University, Baton Rouge, where he is a 
Professor of Electrical Engineering now. His research interests include 
network analysis and synthesis, power phenomena in nonsinusoidal 
systems, compensation and supply quality improvement in such 
systems.  
   For developing a power theory of three-phase nonsinusoidal 
unbalanced systems and methods of compensation of such systems, 
Dr. Czarnecki was elected to the grade of Fellow IEEE in 1996. 

 6


	IEEE Transactions on Power Delivery, Vol. 21, No. 1, Jan. 2006, pp. 339-344
	Could Power Properties of Three-Phase Systems
	 be Described 
	in Terms of the Poynting Vector?
	Leszek S. Czarnecki, Fellow IEEE

	I. INTRODUCTION
	III. CIRCUIT APPROACH AND FIELD APPROACH 

