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Abstract − The Conservative Power Theory (CPT) is one of the 
latest approaches to definitions of powers and compensation in 
systems with nonsinusoidal voltages and currents. It is shown in 
this paper that the CPT misinterprets power phenomena in 
electrical systems, however, and it does not create right funda-
mentals for the power factor improvement by reactive compen-
sation. In particular, capacitive compensation of the “reactive 
energy” W, as defined in the CPT, can even degrade the power 
factor. It is also demonstrated in the paper that the unbalanced 
current in the CPT is wrongly defined.  
Keywords − power definitions; reactive current; reactive power; 
distortion power; Currents’ Physical Components; CPC. 

I. INTRODUCTION 
The Conservative Power Theory (CPT) seems to be the 

latest in the long chain of attempts aimed at developing power 
theory of systems with nonsinusoidal voltages and currents, 
initiated by Steinmetz’s observation [1] that the apparent 
power S could be higher than the active power P, in spite of 
the lack of the voltage and current phase-shift. 

Its development started in 2003 in paper [8], where 
mathematical fundamentals of the CPT were presented for 
single-phase systems with an extension to poly-phase net-
works. Later the CPT was focused mainly on three-phase 
systems [10-12]. It has now disseminated in electrical 
engineering and provides CPT-based interpretations of the 
power phenomena in electrical systems and fundamentals for 
their compensation.  

Taking into account the number of publications based on 
the CPT, it is important that the CPT describes and interprets 
the power related phenomena in a right way and provides 
right fundamentals for compensator design. Unfortunately, as 
it will be shown in this paper, the power quantities and the 
supply current components introduced by the CPT are not 
associated with specific physical phenomena in the load. It 
applies to the quantity introduced in the CPT and called the 
“reactive energy”, the reactive and void currents as well the 
unbalanced current. These new quantities defined in the CPT 
contribute to misinterpretations of power phenomena and to 
erroneous conclusions as to methods of compensator design.  

The CPT has the same deficiencies as the Budeanu power 
theory, exposed in [6] and [7]. Moreover, the adjective 
“conservative”, which is pivotal for the CPT to such a degree, 
that it is used in its name, can be applied, as it was demon-
strated in [13], in the same sense to the Budeanu reactive 
power QB, which does not have any physical interpretation 
and any practical application. In both cases conservativeness 
has nothing in common with the Law of Conservation of 
Energy (LCE). The conservation property of the “reactive 
energy” W in the CPT and the reactive power QB in the 
Budeanu power theory has only mathematical, but not 
physical fundamentals.  

Conclusions on interpretations of very confusing power 
properties, drawn from studies of real and complex systems, 
where various phenomena are superimposed, might not be 
credible. These studies should be done on systems, where the 
number of different power related phenomena is reduced as 
much as possible. It means that to be valid and credible in 
poly-phase systems with a full complexity, these interpreta-
tions, definitions and conclusions have to be credible when 
applied to single-phase and even to purely reactive systems. A 
statement to be valid in the whole set of power systems has to 
be valid in every sub-set of such systems. Single-phase and 
purely reactive loads are just sub-sets of the set of three-phase 
loads. Therefore, to obtain credible conclusions, this paper 
investigates how the CPT interprets the power related pheno-
mena in such, strongly simplified systems.  

II. “REACTIVE ENERGY” W 

The reactive current in the CPT is defined as  
df

Tr 2( ) ( )
|| ||
Wi t u t
u

= 
                             (1) 

where 
df df

0
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T
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denotes “a reactive energy” as defined in the CPT. This term 
is written in quotation marks because the quantity W for a 
capacitor is negative, while energy cannot be negative. Any 
quantity that can be negative cannot be regarded as “energy”. 
The quantity ( )u t denotes the unbiased integral of the supply 
voltage. Index “T” in the definition (1) was used in this paper 
to differentiate the reactive current as defined in the CPT 
from the reactive currents defined in other power theories. 

Introduced by the CPT, a new concept of the reactive 
current irT(t), as defined by (1), has the physical interpreta-
tion entirely founded on the physical interpretation of the 
“reactive energy” W. Thus, what is the “reactive energy”?  

This term does not exist in the first papers on the CPT, 
meaning in [8] and [10]. Its mathematical definition was pro-
vided without any physical interpretation. Its interpretation 
can be found in [12], namely  

“…the reactive energy accounts for inductive and 
capacitive energy stored in the load circuit.” 

To verify this interpretation of the “reactive energy”, let 
us calculate the energy E stored in an ideal LC load, shown 
in Fig. 1, supplied with a sinusoidal voltage  

1( ) 2 cosu t U t .ω=  
The energy stored in such a reactive load is 
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Fig. 1. Ideal reactive load. 

Now, let us calculate the “reactive energy” W of the same 
reactive load.  The unbiased voltage integral is equal to 

( ) 2 sinUu t tωω=                               (4) 

thus the “reactive energy” W of such a reactive load is 

2
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1 1( , ) ( )[ ( ) + ( )] ( )
T

W u i u t i t i t dt C UT Lω
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This is not the energy E stored, as specified by (3), in the LC 
load, shown in Fig. 1. Thus the interpretation of the “reactive 
energy” W, as presented in [12], is not right. It is even more 
visible at a resonance in that load, when 1/ωL = ωC. At such 
a condition the “reactive energy” W is zero, while the energy 
stored in the load is 

2 2 2 2
2

1 1( sin cos )  = UE t C t U .L L
ω ω ωω ω ω

= +          (6) 

Doubts about whether the opinion expressed in [12] is 
right can be strengthened by results of analysis of a purely 
resistive circuit with a TRIAC, shown in Fig. 2. 

 
Fig. 2. Resistive load with periodic switch  

At sinusoidal supply voltage  

1( ) 2 sinu t U tω=  

the load current at the TRIAC firing angle α has the wave-
form as shown in Fig. 3. The load current in such a circuit 
can be decomposed into harmonics  

1
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k= k=

i t i t i t i t
∞ ∞
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with the current fundamental harmonic 

1 1 1 1( ) 2 sin( )i t I tω ϕ= −                           (8) 

i.e., shifted with respect to the voltage as shown in Fig. 3. 
The unbiased integral of the supply voltage is 

1( ) 2 cosUu t tωω= −                            (9) 

and consequently, the “reactive energy” W is equal to  

1
1 1 1

11 0

1( , ) ( , ) ( , ) ( ) ( ) sinn n
n

U IW u i u i u i u t i t dt .T

T

ϕω

∞

=

= = = = =∑ ∫       (10) 

 
Fig. 3. Voltage, current and the current fundamental harmonic i1 

waveforms in resistive circuit with TRIAC 

Thus, loads without any capability of energy storage could 
have a “reactive energy” W. This confirms the previous con-
clusion that the “reactive energy” W is not associated with 
the phenomenon of energy storage.  

The “reactive energy” W is defined originally by (2) in 
the time-domain. In such a way the CPT follows Fryze’s 
concept [4] of defining power quantities without any use of 
harmonics. This confines insight into the meaning of this 
quantity, however.  

Thus, let us express the “reactive energy” W of a purely 
reactive load in the frequency-domain, assuming that the 
supply voltage is nonsinusoidal and composed of harmonics 
of the order n from a set N, namely  

1( ) ( ) 2 cosn n
n N n N

u t u t U n t.ω
∈ ∈

= =∑ ∑                    (11) 

The unbiased integral of such a voltage is 

1
1
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A purely reactive load has the admittance for harmonic 
frequency of the nth order harmonic equal to 

n n n nG + jB jBY = =  
i.e., with 0nG = .  If for the nth order harmonic the load is 
inductive, then Bn < 0 and 

1( ) 2 | sinn n ni t B |U n tω= . 

If for such a harmonic the load is capacitive, i.e., Bn > 0, then 

1( ) 2 | sinn n ni t B |U n tω= − . 

Therefore, the current of a purely reactive load can be 
expressed in the form 

1( ) ( ) 2 sgn{ }| sinn n n n
n N n N
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= = −∑ ∑          (13) 

The “reactive energy” W of such a reactive LC load is 
2

1
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Individual terms Wn of this sum can be, depending on the 
sign of the load susceptance Bn, positive or negative, thus 
they can cancel mutually. This mutual cancelation of the har-
monic “reactive energies” Wn resembles mutual cancelation 



of harmonic reactive powers Qn in the Budeanu definition [3] 
of the reactive power QB. 

B sinn n n n
n N n N

Q U I Q .ϕ
∈ ∈

= =∑ ∑                    (15) 

This mutual cancelation was of one of the major deficiencies 
of the Budeanu reactive power [6, 7], for which it was even-
tually abandoned in the power theory. 

Formula (14) for the “reactive energy” W has a strong 
analogy with definition of the reactive power QB. This is 
particularly visible if (15) is rearranged for reactive loads to 
the form.  
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B nsin sgn{ }n n n n n

n N n N
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∈ ∈
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Individual terms in the Budeanu definition of the reac-
tive power QB stand for the amplitude of the energy osci-
lation at the frequency of individual harmonics, since the 
bidirectional component of the instantaneous power p(t) of 
the nth order harmonic is equal to 

1 1sin sin 2 sin 2n n n n np U I n t Q n t.ϕ ω ω= =          (17) 

The sum (15) of these amplitudes Qn, i.e., the Budeanu 
reactive power QB, does not specify, as shown in [6], any 
physical phenomenon in the circuit, however. 

Thus the “reactive energy” W, when expressed in the 
frequency-domain”, look a lot like power quantities sugges-
ted at the beginning of the power theory development. In 
particular, it occurs to be almost identical with the reactive 
power QI defined in 1925 [2] by Illovici.  

Namely, according to Illovici, the reactive power should 
be defined as the quantity measured by a wattmeter with the 
resistor in the voltage branch replaced by an inductor L.  

Such a device, assuming that it is ideal and lossless, 
measures the quantity 

I
1 sinn n n

n N
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∈
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According to Illovici just this is one of the quantities that 
should be regarded as the reactive power at nonsinusoidal 
supply voltage. 

Assuming that the voltage branch is lossless, then at ter-
minals of a purely reactive LC load such an instrument mea-
sures the quantity 
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Thus, the Illovici reactive power QI and the “reactive energy” 
W differ mutually only by the dimensional coefficient ω1. 
Consequently, there is no physical phenomenon in the load 
that could be characterized by the quantity W, called in the 
CPT “a reactive energy”.  

III. THE REACTIVE CURRENT Tr ( )i t  

The previous section has demonstrated that the physical 
interpretation of reactive current Tr ( )i t  in the CPT cannot be 
founded on the “reactive energy”, since it does not have such 
interpretation. Thus, what it is the reactive current Tr ( )i t ? 

Definition (1) of this current shows that it can be regar-
ded as a current of an ideal inductor, since  

Tr 2 e
1( ) ( ) = ( )

|| ||
Wi t u t u tLu

=  
                       (20) 

where 
2

e
|| ||uL W=


.                                (21) 

It means that with respect to the “reactive energy” W at the 
supply voltage u(t), the purely reactive load is equivalent to 
an inductor of inductance Le. Such an inductor draws the 
current Tr ( )i t  from the supply source. 

Since the physical meaning of the “reactive energy” W in 
the CPT is not clear, not clear is also the physical meaning of 
the reactive current Tr ( )i t . Its meaning can be clarified using 
the Currents’ Physical Components (CPC) power theory. 
Namely, at the supply voltage  
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n

n N
u t eU ω

∈
∑                          (22) 

the reactive current defined in the CPT is 
1
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This is not the reactive current as defined by Shepherd and 
Zakikhani [5], namely the current 

1
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∈
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meaning, the current which occurs in the supply lines due to a 
phase-shift between the voltage and current harmonics. The 
current Tr ( )i t is only a part of that reactive current r( )i t .  

According to the CPT the reactive current Tr ( )i t  can be 
compensated entirely by a capacitor connected as shown in 
Fig. 4.   

 
Fig. 4. RL load with a capacitor which compensates 

the “reactive energy” W. 

The “reactive energy” of the capacitor is  
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Thus a shunt capacitor of capacitance 

2|| ||
WC
u

=                                    (26) 

compensates the “reactive energy” W entirely. It changes the  
CPT reactive current Tr ( )i t  to   

1
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n
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The susceptance of the capacitor C changes with the harmo-
nic order in a different way than the susceptance of the 
equivalent inductance Le, however. Thus, reduction of the 



reactive current Tr ( )i t  does not result from (27), but from 
reduction of the “reactive energy” W to zero and an increase 
of the equivalent inductance Le to infinity. The true reactive 
current r( )i t , as defined by (24), is not compensated, however. 
The CPT ignores the fact that the compensating capacitor can 
affect also the void current. 

IV. THE VOID CURRENT v( )i t  

The load current according to the CPT is composed of the 
active, reactive and the void currents 

a rT v( ) ( ) + ( ) + ( )i t i t i t i t=                           (28) 

where the void current is defined as 

v a rT( ) ( ) [ ( ) + ( )]i t i t i t i t= − .                        (29) 

The void current v( )i t , as defined by (29), is not expressed in 
terms of voltage and the load parameters, which are specified 
in the frequency-domain, however, but in the time-domain. 
The physical meaning of this current is not clear. This 
meaning can be clarified in the frequency-domain, with the 
CPC–based power theory. 

Since the active current a( )i t  is equal to   
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while the reactive current irT(t) is given by (23), thus the void 
current can be expressed as  
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This formula shows that the void current is in fact a com-
pound quantity. It contains in-phase component  
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∈
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revealed in CPC and called scattered current. It contains also 
a quadrature component, i.e., composed of current harmonics 
shifted by π/2 with respect to the voltage harmonics 
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Thus,  
v s vr( ) = ( ) ( )i t i t i t+ .                              (34) 

The quadrature component of the void current has the rms 
value 
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When a capacitor is connected as shown in Fig. 4 to compen-
sate the “reactive energy” W, then the supply current does not 
contain the reactive current irT(t). The quadrature component 
of the void current changes to 
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Its rms value changes to  
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Thus capacitive compensation of the reactive current irT(t) 
changes the void current rms value. Moreover, this change 
increases with the harmonic order n. Thus, compensation of 
the reactive current irT(t) cannot be separated from its effect 
on the void current ivr(t) rms value increase. This is illustrated 
numerically on an example of effects of compensation of the 
“reactive energy” W of RL load shown in Fig. 5. To have 
these effects clearly visible, it was assumed that the fifth order 
harmonic of the supply voltage has the rms value U5 equal to 
the fundamental harmonic rms value U1. It is, of course, 
unrealistically strong distortion, but we could expect that 
conclusions of the CPT are valid irrespective of the level of 
the supply voltage distortion. 

At the supply voltage harmonics complex rms (crms) 
values  

o0
1 5= = 100 V,     || || = 100 2 Vje uU U     

the crms values of the load current harmonics are 
o o45 79

1 5= 70.7 A,    = 19.9 A,   || || = 73.4 Aj je e iI I− −  

so that, assuming that the supply voltage frequency is norma-
lized to ω1 = 1 rad/s, the “reactive energy, is 
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Capacitance of a shunt capacitor for the “reactive energy” W 
of the load compensation is equal to 

2 0 269 F
|| ||
WC .
u

= = . 

The capacitor compensates the “reactive energy” W of the 
load, but it changes the crms values of the supply current har-
monics to  

o o24.8 88.0
1 5= 55.1 A,    = 115.3 A,    || || = 127.8 A.j j' e ' e i'I I−  

The results of compensation of this “energy” are shown in 
Fig. 5. 

 
Fig. 5. Results of compensation of the “reactive energy”  

W of RL load  

The “reactive energy” W of the compensated load is zero, but 
the compensator increases the void current rms value. Conse-
quently, instead of improving the power factor, it was wor-
sened. 

V. DISTORTION POWER  

According to CPT, the load current of a purely reactive 
single-phase LC load is composed only of the reactive Tr ( )i t
current and the void v ( )i t current.  

Tr v( ) ( ) + ( )i t i t i t= .                          (38) 

The supply current of a purely reactive load contains neither  



the active current, as defined in the Fryze Power Theory [4], 
nor the scattered current, as defined in the CPC–based power 
theory [9]. 

The reactive and void currents are mutually orthogonal, 
so that their rms values satisfy the relationship 

2 2 2
rT v|| || || ||  + || ||i i i= .                        (39) 

Multiplying this formula by the square of the supply voltage  
rms value ||u||, the power equation of reactive loads is 
obtained. It has the form 

T T
2 2 2+S Q D= .                                (40) 

According to [12], the quantity 

T v|| || || ||D i u×=                               (41) 

is a distortion power of the load. In some papers on the CPT, 
such as [10], this quantity is called a void power.  

The concept of a distortion power occurred for the first 
time in Budeanu’s power theory. It was defined as  

df

B
2 2 2

BD S P Q .= − −                            (42) 

Indices T and B were used in (42 − 44) to distinguish distor-
tion powers in Budeanu and CPT power theories. Despite 
having the same name, these are two different quantities.  

Distortion power DB is interpreted as a measure of the 
effect of the voltage and current mutual distortion on the 
apparent power S of the load. This interpretation was chal-
lenged in [6, 7], where it was demonstrated that such inter-
pretation was not right. There is no relation between distor-
tion power DB and the voltage and current mutual distortion.  

Let us check whether distortion power DT defined in the 
CPT is related to the load voltage and current mutual distor-
tion. This is done below with a numerical analysis of a 
purely reactive load shown in Fig. 6 

 
Fig. 6. Circuit with reactive load. 

supplied with the voltage: 

1 1( ) = 2 (100sin 30sin3 )Vu t t tω ω+ ,      ω1 = 1 rad/s. 

The admittances of such a load for the voltage harmonics are 
Y1 = −j1/2 S and Y3 = j1/2 S. The “reactive energy” W of 
such load is equal to  
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the rms value of the reactive current irT(t) is 
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The load current rms value is  
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Since the active current does not exist, the rms value of the 
void current is equal to 

2 2 2 2
v rT|| || || || || || 52 2 48 26 19 90Ai i i . . .= − = − =  

so that the distortion power 
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The load current is equal to 
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The load current is only shifted versus the voltage by T/4, as 
shown in Fig. 7. In spite of non-zero distortion power DT, the 
voltage and current are not mutually distorted. It demon-
strates that there is no relation between distortion power DT 
and distortion of the load current with respect to the supply 
voltage. 

 
Fig. 7. Waveforms of the voltage and current. 

This conclusion has a strong analogy to the conclusion on 
the distortion power DB in the Budeanu Power Theory. Both 
in the CPT and in the Budeanu power theory, the name 
“distortion power” of DB and DT quantities suggests a rela-
tionship between these powers and the voltage and current 
mutual distortion. There is not such a relationship between 
these powers and the voltage and current distortion, however. 
The concept of these powers in both cases contributes to 
misinterpretation of power related phenomena in systems 
with nonsinusoidal voltage. 

VI. UNBALANCED CURRENT 
The unbalanced current in the CPT has two components, 

the active and reactive ones. This concept is investigated 
assuming that the load is purely resistive, so that only the 
active component of the unbalanced current can occur. Its 
three-phase rms value can be calculated according to [11] 
formula (12a) as 

3
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nn

P P
U

I
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where Pn denotes the active power of the nth phase of the load, 
Un is the rms value of that phase voltage and U is in [11] a 
symbol of a collective rms value, which is equal to, defined in 
[9], three-phase rms value ||u||  

2 2 2
1 2 3|| || U U UU= = + +u .                         (44) 

The formula (45) does not provide the right value of the 
unbalanced current, however. To show this, let us consider a 
purely resistive load shown in Fig. 8 with a sinusoidal and 
symmetrical supply voltage of the crms values 

o o o0 120 120
1 2 3100 V,  100 V,  100 V.j j je e eE E E−= = =  

For parameters as shown in Fig. 8 we have 

P1 = 0,    P2 = 15 kW,    P3 = 15 kW,     P = 30 kW 
U1 = U2 = U3 = 100 V,    = || || 3 173.20 V.UU = =u  

 
Fig. 8. Resistive circuit with unbalanced load. 

Consequently, formula (43), meaning (12a) in [11], results in  
3

u 2 2
uT a

1
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nn
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= = − =∑i .            (45) 

This is not the right three-phase rms value of the unbalanced 
current in such a circuit, however. The vector of the load 
current i = [i1, i2, i3]T in such purely resistive circuit is 
composed of only the active ia and the unbalanced iu currents, 
namely. 

i(t) = ia(t) + iu(t).                               (46) 
These two currents are mutually orthogonal, so that their 
three-phase (collective) rms values have to satisfy the relation 

2 2 2
a u|| || || || || ||= +i i i                               (47) 

where in circuit shown in Fig. 8,  
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Hence the three-phase rms value of the unbalanced current is 
2 2

u a|| || || || || || 173 20 A.= − =i i i .                   (48) 

This is not the value 122.4 A obtained by (45) from (12b) in 
[11]. The numerical result (48) can be confirmed by decom-
position of the load current into symmetrical components. 
Active current ia(t) in the situation shown in Fig. 8 is identi-
cal with the positive sequence component of the load current, 
while the unbalanced current iu(t) is identical with the nega-
tive sequence component of that current. 

VII. CONCLUSIONS 

The Conservative Power Theory, the latest step in the 
power theory development, occurs to be a sort of return to its 
initial phase, to Illovici and Budeanu concepts. Although, 
unlike the Budeanu power theory, it is formulated in the 
time-domain and generalized to unbalanced three-phase 
loads, it has all deficiencies of the Budeanu power theory. 
CPT also follows the Fryze approach, meaning it is based on 
the current orthogonal decomposition, but repeats some of its 
deficiencies. Namely, just as Fryze’s concept did not explain 
the physical meaning of the reactive current, irF(t), the CPT 
also does not provide physical interpretation of the reactive 
current irF(t), because the “reactive energy” W is not a 
physical quantity. Consequently, the void current iv(t) also 
does not have any physical meaning. It is associated in the 
CPT with distortion power DT, but similarly as it was with 
Budeanu distortion power DB, there is no relationship 
between distortion power and the voltage and current mutual 
distortion. It means that the Conservative Power Theory 
misinterprets power related phenomena in electrical circuits. 
Moreover, the Budeanu Power Theory is not less “conserva-
tive” than the Conservative Power Theory.  
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