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Abstract − The effectiveness of the energy delivery from its pro-
ducers to customers is affected by a number of physical pheno-
mena, but the nature of these phenomena is unclear and debated 
over a century. This debate has resulted in a number of power 
theories and a great variety of definitions of different power 
quantities. All of them are mathematically correct but differ as to 
the interpretation of the physical phenomena which accompany 
the energy transfer and affect the effectiveness of this transfer. 
These definitions and physical interpretations affect the method 
of the power factor improvement and unfortunately, they can 
cause a compensator malfunction.  

Presently, the most advanced power theory is based on the 
Currents’ Physical Components (CPC) concept. Results of this 
theory are used in this paper for a discussion on physical phe-
nomena which affect the effectiveness of the energy transfer in 
electrical systems. 

Index Terms—Definition of powers, instantaneous power, 
harmonics, asymmetry, Currents’ Physical Components, CPC, 

I. INTRODUCTION  
Two major powers used for describing power properties of 

electrical systems, namely, the apparent power S and the active 
power P, satisfy the inequality 

S P≥                                          (1) 

which affect the power system economy. Explanation of this 
inequality and the development of methods of its reduction by 
means of a compensator is the subject of the power theories of 
electrical systems. Hundreds of papers were devoted to this 
inequality and several power theories were developed.  

The most known are the power theories suggested by 
Budeanu in 1927 [1], by Fryze in 1931 [2], by Shepherd and 
Zakikhani in 1972 [3], by Kusters and Moore in 1980 [4], by 
Nabae and Akagi in 1984 [6], by Depenbrock in 1993 [10], and 
by Tenti in 2003 [12]. Some of them were regarded even as 
standards and are currently used for describing power proper-
ties of electrical systems. They also provide theoretical funda-
mentals for methods of the development of compensator for the 
power factor λ = P/S improvement. 

Power theories compiled above use different mathematical 
tools. Although all of them are mathematically correct, these 
theories differ substantially as to the interpretation of the phe-
nomena that affect the effectiveness of the energy transfer from  

the supply source to the load.  
As long as we think about or discuss power related physical 

phenomena in electrical systems, the derived conclusions are 
on a cognitive level and could be subjective. We can have 
different opinions on the meaning of “a physical entity” or “a 
physical phenomenon”. Such conclusions may not have practi-
cal merits. Their application for reactive compensators design 
or switching compensators control could be a major test for 
correctness of these conclusions and have practical merits. 

Presently the most advanced is the Currents’ Physical Com-
ponents (CPC) – based power theory [5, 7, 9, 17]. It explains 
and describes power properties of linear and nonlinear loads in 
single- and in three-phase systems with nonsinusoidal supply 
voltage. It provides both interpretations of the power-related 
physical phenomena and fundamentals for a design of reactive 
compensators and algorithms for control of switching compen-
sators. A cognitive strength of the CPC-based power theory 
justifies its use as a reference for a discussion on the physical 
phenomena in electrical loads that can cause a degradation of 
the effectiveness of the energy transfer in electrical systems. 

II. DRAFT OF THE CPC-BASED POWER THEORY 
Let us consider a three-phase load, which can be linear or 

nonlinear, meaning a Harmonics Generating Load (HGL), sup-
plied, as shown in Fig. 1, from a source of a distorted voltage, 
by a four-wire line. 

 

Fig. 1. A load supplied by a three-phase, four-wire line. 

The load current, regarded as a three-phase vector of the 
line currents 
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where N denotes the set of the current harmonic orders n, can 
be decomposed into five Physical Components, namely 

Ca Cs Cr Cu G= + + + +i i i i i i                        (3) 

distinctively associated with five different physical phenomena 
in the load. These are:  

1. Permanent transfer of the energy from the supply source 
to the load, associated with the active current iCa. 

2. A change of the load conductance with the harmonic 
order n, associated with the scattered current iCs. 

3. A phase shift between the load current and the voltage 
harmonics, associated with the reactive current iCr. 

4. The load current asymmetry caused by the load imba-
lance, associated with the unbalanced current iCu.  

5. Generation of the current harmonics by nonlinear or 
periodically switched loads, which results in transfer the 
energy from the load back to the supply source, associa-
ted with the load generated current iG. 

All these currents are mutually orthogonal, meaning the scalar 
product (x , y ) defined as 

T

0

1( , )  = ( ) ( )
T

t t dt
T ∫x y x y                          (4) 

of each of these currents with the remaining ones, is equal to 
zero. Consequently, all these currents affect the supply current 
three-phase rms value ||.||, defined in [7] as 

|| || = ( , )x x x                                     (5) 

independently of each other, because, due to their mutual 
orthogonality, they satisfy the relationship 

2 2 2 2 2 2
Ca Cs Cr Cu G|| || || || || || || || || || || ||= + + + +i i i i i i .    (6) 

Of all these five currents only the active current iCa contributes 
to useful transfer of the energy from the supply source to the 
customer load. The remaining ones contribute only to an inc-
rease of the supply current rms value and the energy loss in the 
supply source. It means they degrade the effectiveness of the 
energy transfer in electrical systems. 

The presented above results are conclusions from relatively 
recently developed Currents’ Physical Components (CPC) – 
based power theory of electrical systems. However, according 
to very common in the electrical engineering community opi-
nions [8], energy oscillations are the cause of the degradation 
of the effectiveness of the energy transfer. These opinions can 
have an adverse effect on the development of compensators for 
power factor improvement. Such opinions should be therefore 
carefully scrutinized. In particular, properties of the instantane-
ous power, which can contain an oscillating component, should 
be analyzed for that. 

III. INSTANTANEOUS POWER  
Power properties of electrical systems are described in 

terms of different powers. The most fundamental of them is the 
instantaneous power p(t). This power is defined as a rate of the 
energy W(t) flow to the load. For single-phase loads supplied 
with a voltage u(t) and a current i(t), this power is equal to 

( ) ( ) = ( ) ( )dp t W t u t i tdt=                          (7) 

For three-phase systems, shown in Fig. 1, the instantaneous 
power is equal to 

T
R R S S T T( ) + +p t u i u i u i= = u i .                  (8) 

 
Fig. 2. A structure of three-phase, three-wire system. 

The instantaneous power is, from the physical perspective, 
the only power quantity that has a clear physical interpretation. 

The active power, defined as  

0

1 ( )
T

P p t dtT= ∫                                  (9) 

is commonly regarded in the electrical engineering community 
like the instantaneous power, as a quantity with a clear physical 
interpretation. Observe however that definition (9) requires the 
voltage and current of a load be periodic with a period T, or 
they are approximated by periodic quantities. Therefore, it 
could be debatable whether the active power P, as an averaged 
quantity, is a physical quantity or not. 
 The fact that the instantaneous power p(t) has such a con-
vincing physical interpretation, motivated opinions of some 
researchers that just this power should be a central one in a 
power theory of electrical systems. Observe, however, that the 
major inequality (1), the power theories are developed around, 
cannot be expressed in terms of the instantaneous power.  
 The instantaneous power p(t) is a central quantity in the 
Instantaneous Reactive Power (IRP) p-q Theory [6]. It is calcu-
lated in the frame of that theory, along with the instantaneous 
reactive power, using three-phase voltages and current recalcu-
lated to the α and β coordinates with a Clarke’s Transform, 
which for three-wire systems has the form  
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Having them, the active and the reactive instantaneous powers, 
p and q, are defined as follows 
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These two powers are essential for control of switching com-
pensators, known mainly as “active power filters”. This name 
is written above in quotation marks, “..”, because these devices 
are not active, do not filter power, and are not filters but 
compensators. According to the Authors of the IRP p-q Theory 
[6], the compensator should be controlled in such a way that 
after compensation the supply source be loaded only by the 
constant component p of the instantaneous power p. It means 
that the alternating component p of that power, along with the 



instantaneous reactive power q should be compensated, mean-
ing the compensator should inject the following current  
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into the system. This conclusion is not right, however. To show 
this, let us consider an ideal balanced resistive load, with unity 
power factor, shown in Fig. 3. It does not need, of course, any 
compensation, but let us suppose that a compensator controlled 
according to the (IRP) p-q Theory, is connected at its terminals. 

 
Fig. 3. Balanced resistive load with compensator. 

 Let the supply voltage is distorted by the 5th order harmo-
nic, so that 

1 5= +u u u                                     (13) 

assuming for the sake of simplicity that  
 R1 1 1 R5 5 12 cos ,         2 cos 5u U t u U tω ω  . (14) 

The instantaneous power of the load is 
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The first two terms are constant components of the instanta-
neous power, equal to 

T 2 T 2
1 1 1 1 5 5 5 5|| || ,    || ||G G P G G P= =u u u u u u      (16) 

where P1 and P5 are harmonic active powers of the fundamen-
tal and the 5th order harmonics. The last term 

T T
1 5 5 1 1 5 1( )  =  6 cos 6G GU U tω+u u u u .           (17) 

Eventually, the instantaneous power of the load is 


1 5 1 5 16 cos 6p P P GU U t p + pω= + + = .              (18) 

It has a non-zero oscillating component which should be, 
according to the (IRP) p-q Theory, reduced by a compensator.  
The Clarke’s components of the compensator current are 
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or in more details, as shown in [14], 
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Thus, the compensator injects some distorted current into the 
system, reducing the power factor, instead of improving it. 

Anyway, there is nothing to improve, because the considered 
load has unity power factor.  

A similar situation occurs [15, 16] when the supply voltage 
of the load shown in Fig. 3 is sinusoidal but asymmetrical. 
This asymmetry does not affect the load power factor, which 
is equal to one, but the instantaneous active power has an 
oscillating component. If Up and Un are the rms values of the 
voltage symmetrical components of the positive and the nega-
tive sequence and Pp and Pn are active powers of these compo-
nents, then the instantaneous power of a load supplied by 
asymmetrical voltage is 

p n p n
1( ) 6 cos 2dWp t P P GU U t

dt
ω= = + + .           (21) 

According to the (IRP) p-q Theory, the oscillating component 
of this power should be compensated. Unfortunately, its com-
pensation degrades the power factor and causes the supply 
current distortion [15]. 
 The oscillating component in the instantaneous power 
occurs, as discussed above, because of the supply voltage dis-
tortion or asymmetry. However, even if this voltage is sinu-
soidal and symmetrical, the oscillating component in this 
power is blamed for the presence of the reactive power Q. 
Thus, we have a cognitive question: “does the reactive power 
occur in a system because of the energy oscillation?” 
 To answer this question, let us decompose the current of a 
linear time-invariant (LTI) load, supplied with a sinusoidal, 
symmetrical voltage, into Physical Components [13]. If the 
load has an equivalent conductance Ge, an equivalent suscep-
tance Be and un unbalanced admittance Yu, then the load 
current can be decomposed as follows 

a r u= + +i i i i  
where 

p
a e2 Re { }j tG eU ω=  i 1                       (22) 

p
r e2 Re { }j tjB eU ω=i 1                       (23) 

n
uu 2 Re { }j teY U ω=i 1                        (24) 

are the active, reactive and unbalanced currents, respectively  
while symbols 1p and 1n denote three-phase unite vectors, 
shown in Fig. 4. 

 

Fig. 4. Three-phase unite vectors. 

The instantaneous power p(t) can be expressed as follows 
T T

a r u a r u( ) ( ) ( ) + ( ) + ( )p t p t p t p t= = + + =u i u i i i       (25) 

thus, it has three additive components associated separately 
with the Currents’ Physical Components, i.e., with the active, 
reactive and unbalanced currents. 



The component of the instantaneous power associated with 
the active current is equal to 

T T 2
a a e e( ) || ||p t G G P= = = =u i u u  u             (26) 

meaning, it does not change in time. Assuming that 
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hence, the reactive current changes as 
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Calculating the dot product of the supply voltage and the 
reactive current vectors, we obtain  

T
r r( ) 0p t = =u i                                (29) 

thus, the reactive current does not contribute to the energy 
flow between the supply source and the load. Thus, the 
reactive power Q does not occur in the system because of the 
energy oscillation between the supply source and the load. In 
fact, oscillations of the energy between the supply source and 
the load are caused by the load current asymmetry caused by 
the load imbalance. At such an imbalance, an unbalanced 
current occurs in the load current 
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where Ψ denotes a phase angle of the unbalanced admittance 
Yu. The instantaneous power associated with the unbalanced 
current is  

T 2
u u u R( ) = 3 cos(2 )p t Y U tω Ψ= +u i .               (31) 

Thus, only the unbalanced current but not the reactive current 
and consequently, the reactive power, causes the energy oscil-
lations.  
 Sometimes, the energy oscillations between the supply 
source and the load are blamed for the power factor decline in 
the presence of the voltage and current harmonics.  

This opinion can be supported [11] with results of analysis 
of the circuit shown in Fig. 5. It is composed of a dc battery 
and a periodic switch.  

 
Fig. 5. A circuit with a periodic switch. 

The apparent power at the load terminals S = ||u|| ||i|| = 5kW, 
while the active power P = 0, thus the power factor λ has zero 
value. This can be explained in the frequency-domain, using 
the concept of harmonics as follows. 

The load voltage and the current can be expressed in a form 
of the Fourier Series 
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The instantaneous power at the load terminals 
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is a sum of oscillating components and these oscillations deg-
rade the power factor λ to zero value.  
 This explanation is erroneous, however. The energy cannot 
flow across an open circuit so that the instantaneous power har-
monic component of the nth order 

1( ) cos( )n n np t S n t= ω + ϕ                             (35) 

cannot exist as a physical quantity. This is only a mathemati-
cal object. There are no physical oscillations of the energy in 
the circuit shown in Fig. 5.  

Being aware of that, the concept of harmonics is fundamen-
tal for the power theory, however. All attempts aimed at a des-
cription of the power phenomena without harmonics have 
failed. In fact, the Currents’ Physical Components in the frame 
of the CPC-based power theory are defined in the frequency-
domain, meaning in terms of harmonics. Such a power theory, 
of comparable strength, in the time-domain was not yet deve-
loped. 

IV. CAN THE POWER PROPERTIES BE IDENTIFIED 
INSTANTANEOUSLY? 

A clear physical interpretation of the instantaneous power 
p(t) has created a strong incentive for specifying and describing 
power properties of electrical systems in terms of powers 
defined just as instantaneous quantities. Indeed, the instanta-
neous power p(t) is an unquestionable power quantity. The 
Instantaneous Reactive Power p-q Theory is the most visible 
demonstration of such an approach. This approach is in a clear 
contrast to a common custom of defining powers through 
averaging of some quantities over the period T of voltages and 
currents.  

There are situations in power systems where indeed instan-
taneous values of voltages and currents are crucial, as it is 
during disturbances or faults. Performance of electrical sys-
tems with periodic voltages and currents is specified at normal 
operation not in terms of instantaneous values of power, but in 
terms of quantities defined as some integrals over the supply 
voltage period T, however. These are the active, reactive and 
apparent powers, the voltage and current rms value, the power 
factor, rms value of harmonics, harmonic distortion, or the 
voltage and current symmetrical components. The instantane-
ous power p(t) usually is not a matter of interest for system 



designers and operators. However, terms like “rms”, “appa-
rent power”, and “harmonic” are alien for theories that des-
cribe instantaneous properties of electrical systems. 

The major difficulty of the power theories that claim to be 
“instantaneous“, stems from the fact that power properties of 
the load cannot be identified [13] instantaneously. This is 
illustrated in Fig. 6, with an unknown load and a pair of 
instantaneous values of the load voltage and current.  

 
Fig. 6. Unknown load and pair of instantaneous values  

of the load voltage and current. 

As shown in Fig. 7, at the same samples uk, ik, a resistor, an 
inductor or a capacitor or any combination of them could be in 
the in “black box”.  

 

Fig. 7. Different loads with identical pairs of the voltage 
 and current instantaneous value.  

In fact, an infinite number of different loads can have iden-
tical pairs of voltage and current samples. Taking into account 
that the load voltage and current are in general nonsinusoidal, 
the instantaneous values of the voltage and current over the 
whole period T have to be measured to draw conclusions on 
the load power properties.  

Quantities obtained by averaging could be added to the 
instantaneous power theory, but this would undermine the 
claim that the theory is indeed instantaneous. It is just the case 
of the Instantaneous Reactive Power p-q Theory. As it was 
demonstrated in [13] two entirely different loads, one purely 
resistive and another one, purely inductive, can have at some 
instant of time, identical pairs of the p, q powers. The circuits 
are shown in Fig. 8 and in Fig. 9. 

 
Fig. 8. A three-phase circuit with a purely resistive load. 

The instantaneous active and reactive powers in this resis- 

tive circuit are equal to 
o

13 cos(2 30 )p u i u i U I tα α β β ω= + = −            (36) 
0

13 sin 2( 30 )q u i u i U I tα β β α ω= − = − + .          (37) 

At the instant of time such that: o o
1 30  = 45tω + , these powers 

are equal to 
3p q U I= − = .                             (38) 

 

Fig. 9. A three-phase circuit with a purely reactive load. 

The instantaneous active and reactive powers in this reactive 
circuit are equal to 

o
13 cos(2 30 )p u i u i U I tα α β β ω= + = −                (39) 

o
13 [1 sin (2 30 )]q u i u i U I tα β β α ω= − = − + − .    (40) 

At the instant of time such that: o
12  = 30tω , these powers are 

equal to 
3p q U I= − = .                             (41) 

It means that having such a pair (p, q), we cannot conclude 
what are the power properties of the load. The active power P 
can be found only by averaging the instantaneous active 
power p, but even with this averaging, the concepts of the 
apparent power S and consequently, the concept of the power 
factor does not exist inside of this theory. Thus, the 
instantaneous approach to the power theory is not capable [16] 
of providing any physical interpretation of the power 
properties of electrical systems. It can be done only by the 
averaging approach. Just this approach provides fundamentals 
for the Currents’ Physical Components (CPC) – based power 
theory. This theory provides presently the most advanced 
description of the power properties of electrical systems, as 
well as, theoretical fundamentals for their compensation. 
Explanation of these phenomena is drafted in the next Section. 

V. POWER RELATED PHYSICAL PHENOMENA 

Loads in commercial buildings or in industrial plants can be 
reduced to a load of the structure shown in Fig. 1. It can have 
aggregates of single-phase as well three-phase loads, supplied 
from three-wire or from four-wire lines. The loads can be 
linear or nonlinear, i.e., be harmonics generating loads (HGL). 
The supply voltage can be distorted, but for simplicity sake, it 
is assumed here that the supply voltage is symmetrical.  

Having the voltages and currents at the load terminals RST 
available, the complex rms values Uxn and Ixn (x = R, S or T) of 
the voltage and current harmonics can be measured. 

Let the set of all orders n of the load voltage and current 
harmonics for which their crms value can be measured with an 
acceptable accuracy be denoted by N. 

For each voltage harmonic of the nth order the equivalent 
load, shown in Fig. 10, can be found  



 

Fig. 10. An equivalent load for the nth order harmonic. 

with line-to-neutral admittances equal to  
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The active power of a harmonic of the nth order 
2

R S TRe{  + } || ||n n n n nP Y Y Y= + u                 (43) 

could be positive or negative. If it is positive, then the energy at 
this harmonic frequency is transported from the supply source 
to the load. The set of such harmonic orders is denoted by NC. 
If this harmonic active power Pn is negative, then the energy at 
this harmonic frequency is transported from the load back to 
the supply source. The set of such harmonic orders is denoted 
by NG. 

Having sub-sets NC and NG, all harmonics of the load vol-
tage and current can be decomposed [9] into the supply system 
originated harmonics and the load originated harmonics,  
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The same can be done with the harmonic active powers 
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The current iG in (39) 
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n
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referred to as a load generated current, is associated with a 
phenomenon of the energy transfer from the load to the supply 
source due to the current distortion by the load nonlinearity or 
periodic variance, with the period T, of the load parameters. 
This distortion, described usually in terms of harmonics, causes 
that at some harmonic frequencies the energy flows from the 
load back to the supply source, where it is dissipated on the 
supply source internal resistance. 

Voltage uG in (45) is a negative sum of harmonics that 
occur at the load terminals as a response to the load generated 
current harmonics. As the voltage response of the source, 
these harmonics have an opposite sign as compared to the 
supply source originated harmonics.  

The current 

C
C C

C
Ca Ce2|| ||

P
G= =i u u

u
                        (48) 

is associated with the phenomenon of the energy transfer from  
the supply source to the load. This current is referred to as an 
active current. 

For each harmonic of the order n from the sub-set NC the 
load has an equivalent admittance [17] 
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= G + jBY Y Y Y

−
= = + +
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which can be calculated having measured the harmonic active 
and reactive powers Pn and Qn and the three-phase rms value 
of the supply voltage harmonic ||un||. Having this admittance, 
two currents can be defined 
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referred to as a scattered current and  
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referred to as a reactive current. The symbol 1n denotes unite 
three-phase vector for the nth order harmonic, defined as 
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The scattered current iCs is associated with the phenomenon of 
the equivalent conductance Gen change around the GCe value, 
while the current iCr is associated with the phenomenon of the 
phase-shift between the voltage and current harmonics. The 
current 
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p p n n z z
Cu u u u R2Re ( ) jn t

n n n n
n N

eY Y Y U ω

∈
= + +∑i 1 1 1  (54) 

is associated distinctively with the phenomenon of the load 
current asymmetry caused by the load imbalance. It is referred 
to as an unbalanced current, where [15] 

p
u R S T e

1[( ) (1+ )]
3n n n n n* * * *Y Y Y Y Yαβ α β αβ α β= + + − +     (55) 

n
u R S T e

1[( ) (1+ )]
3n n n n n* * * *Y Y Y Y Yα β αβ α β αβ= + + − +       (56) 

z
u R S T e

1[( ) (1+ )]
3n n n n n* *Y Y Y Y Yβ β β β= + + − +             (57) 

are unbalanced admittances of the positive, negative and zero 
sequence. Consequently, a three-phase vector i of the load 
current in the circuit shown in Fig. 1 can be decomposed 
according to the CPC-based power theory, into five Physical 
Components, as specified by (3). 

VI. AN EXAMPLE OF CPC APPLICATION FOR A REACTIVE 
COMPENSATOR DESIGN 

This paper was devoted to explanation, in terms of the CPC 
concept, the physical phenomena that affect the energy transfer 
in electrical systems. Nonetheless, the CPC was developed for 
providing fundamentals for the design of compensators that 
could improve the effectiveness of this transfer. In fact, the 



CPC-based power theory is currently the only one theory that 
creates fundamentals for compensators design in the presence 
of the supply voltage distortion. This is illustrated in the 
following example. Details are in the paper [18], currently in 
printing. 

Example. Let us assume that the load shown in Fig. 11, 
with ω1L = R = 0.5 Ω, is supplied with a symmetrical voltage 
of the fundamental harmonic rms value U1 = 240 V, distorted 
by the 3rd, 5th, and 7th order harmonics of the relative rms 
value U3 = 2%U1, U5 =3%U1 and U7 = 1.5%U1. 

 
Fig. 11. An example of an unbalanced load. 

The load power factor is λ = P/S = 0.408. The three-phase 
rms values of the particular physical components of the load 
current are shown in Fig. 11. Index “C” is omitted in symbols 
of these current because it was assumed that the load is linear 
so that the load generated current iG does not exist. Indices “z”, 
“p” and “n” denote symmetrical components of the zero, posi-
tive and the negative sequence of the load unbalanced current. 

The CPC – based power theory provides fundamentals for 
calculating LC parameters of the reactive compensator, com-
piled in Table 1. 

Table 1. LC parameters of a reduced complexity compensator 

 Line: R S T RS ST TR 
L mH 1730 770 444 0 2600 1155 
C mF 0 399 691 0 0 266 

 
The results of compensation are shown in Fig. 12. The power factor 
is improved by the compensator to λ = 0.994.  

 
Fig. 12. Results of compensation of an unbalanced load. 

VIII. CONCLUSIONS 
 Explanation of the physical phenomena that affect the 
effectiveness of the energy transfer, apparently having only 
cognitive merits, occurs to be crucially important for the deve-

lopment of methods of this effectiveness improvement. Just 
because of misinterpretations of these phenomena the Instanta-
neous Reactive Power p-q theory is not capable of providing 
right control for switching compensators in the presence of the 
supply voltage distortion or asymmetry. The CPC - based 
power theory does not have such a deficiency because it is 
focused on a right interpretation of physical phenomena associ-
ated with the energy transfer. 
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