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Abstract: The instantaneous reactive power (IRP) p–q theory can be acknowledged as the first concept that provided
fundamentals for switching compensator control and very often such a control is satisfactory. There are situations when this
control can result in objectionable effects, however. Instantaneous active and reactive powers, p and q, defined in the IRP
p−q theory, were introduced with the emphasis that the definitions of these powers are valid for any three-phase system,
without any constraints as to the system properties with respect to the load structure and the supply voltages and load currents
waveform. This may imply a conclusion that the instantaneous powers p and q specify the power properties of the three-
phase systems regardless of such systems properties. This assurance regarding the lack of constraints has contributed to the
dissemination of the IRP p−q theory, especially as a fundamental of the algorithms for switching compensator control. This
study shows that such a conclusion has no ground, however. In fact, only at very specific properties of the three-phase system
some conclusions on its power properties can be derived from the values of the instantaneous active and reactive powers.
Also, it shows that the IRP p−q theory identifies the power properties of the three-phase loads correctly only on the condition
that such loads are supplied with symmetrical and sinusoidal voltage.
1 Introduction

The instantaneous reactive power (IRP) p−q theory,
developed by Akagi et al. [1, 2], can be acknowledged as
the first concept that provided the fundamentals for
switching compensator control and very often such a
control is satisfactory. There are situations when this control
can result in objectionable effects, however. It is one of the
main power theories of the three-phase systems with
nonsinusoidal voltages and currents.
It is usually expected from a power theory that it

provides the interpretation of the energy flow phenomena
in electrical systems and describes this flow in terms of
powers. It is also expected that the power theory creates
theoretical fundamentals for compensation in such
systems. All these capabilities have at least the power
theory of the single-phase systems with sinusoidal voltage
and currents.
The importance of the three-phase systems for energy

delivery along with the promises of the IRP p−q theory
caused a tremendous interest in this concept and a huge
number of journal and conference publications on this
theory and its applications for the control of the pulse-width
modulation inverter-based switching compensators, known
commonly as active power filters. The number of the papers
on the IRP p−q theory and its applications is now in the
range of a few hundreds, this number continuously
increases, and it is too high for citation in this paper,
however. The author might only recommend the most
recent presentations of the IRP p−q theory with conclusions
by Herrera and Salmerón [3, 4], Morsi and El-Hawary [5]
or Superti-Furga and Todeschini [6].
According to Akagi et al. [1, 2], there are no constraints on

the conditions for which the IRP p-q Theory is valid and the
instantaneous powers p and q can be calculated. This is
evidently true, because the definitions of these powers are
not confined by any condition as to the voltage and the
current waveform and/or the symmetry. This conclusion
may not apply, however, for using these powers in a
compensator control algorithm. Without any restrictions
these powers were used in Refs. [1, 2] as primary data for a
compensator control.
The number of the IRP p−q theory related publications

shows the level of its acceptance. There are papers that
reported some problems with the IRP p−q theory and with
its applications for compensator control, however.
The following issues are mainly a matter of concern in

some publications on this theory.

(i) Some papers [7, 8] report a low performance of the
compensators with the IRP p−q theory-based control in the
presence of the supply asymmetry and/or harmonic distortion.
(ii) Possibility of an increase of the supply current distortion
when a compensator is controlled with the IRP p−q
theory-based algorithms, in [3, 9–12, 24, 25].
(iii) There are different opinions [3, 13–15] whether the IRP
p−q theory makes instantaneous compensation possible or
not.
(iv) There is still confusion, reported in [15, 16, 17, 23], as to
the physical interpretation of the IRP q.
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The first three issues, that is, (i)–(iii), have a practical

importance, while the last, (iv), only a cognitive one.
Items (i) and (ii) imply a question: ‘do p and q powers really

convey information sufficient for a compensator control
without any restrictions as to the three-phase system
properties?’ The conclusions of the papers [7–12, 24, 25]
show that the answer to this question seems to be negative.
It means that some restrictions on using the p and the q
powers in the control algorithms are necessary. The question
‘at what kind of restrictions respective three-phase systems
properties the IRP p−q theory describes power properties of
such systems correctly?’ is the subject of this paper.

2 Instantaneous p and q powers in terms of
line voltages and currents

The instantaneous active and reactive powers p and q are
calculated, according to the IRP p−q theory, in terms of the
load voltages and currents expressed, by using Clarke’s
transform, in the α and β coordinates. The voltages and the
currents in the α and β coordinates are mathematical rather
than physical entities, however. This creates some
difficulties for physical interpretation of the instantaneous
powers, in particular, the reactive one. Clarke’s transform is
not needed for calculation of the instantaneous powers p
and q, however. It is easier to associate some features of the
instantaneous powers with the system properties when these
powers are expressed directly in terms of the three-phase
voltages and currents, as shown in Fig. 1, rather than in
terms of their values in the α and β coordinates.
Let us introduce a three-phase vector of the line voltages

u(t) = [uR(t), uS(t), uT (t)]
T =df u (1)

where the voltages at the load terminals R, S and T,
respectively, are measured with respect to an artificial zero,
and similarly, a vector of the supply currents

i(t) = [iR(t), iS(t), iT (t)]
T=df i (2)

Since

iR(t)+ iS(t)+ iT (t) ; 0 (3)

uR(t)+ uS(t)+ uT (t) ; 0 (4)

the formula for the calculation of the instantaneous power p
can be simplified as follows

p = �p+ p̃ = dW

dt
= uTi = uRiR + uSiS + uT iT

= (uR − uT )iR + (uS − uT )iS = uRTiR + uSTiS

(5)

The instantaneous active and reactive powers p and q, are
Fig. 1 Three-phase load supplied with a three-wire line
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defined in the IRP p−q theory in terms of the voltages and
the currents in the α and β coordinates

p = uaia + ubib

q = uaib − ubia
(6)

calculated by using Clarke’s transform. This transform for the
three-phase, three-wire systems with the voltages and the
currents that satisfy the properties (3) and (4) can be
rearranged to the form

ua
ub

[ ]
=

����
3/2

√
, 0

1/
��
2

√
,

��
2
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[ ]
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[ ]
(7)

and similarly for the currents

ia
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[ ]
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These formulae enable us to express the IRP q directly in
terms of the supply voltages and the currents, meaning in
the phase coordinates. Namely

q = uaib − ubia

=
��
3
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1��
2
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��
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3
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iR

=
��
3

√
(uRiS − uSiR)

(9)
3 Instantaneous p and q powers of
the purely resistive loads at the sinusoidal
supply voltage

When an analysed system is complex, it is often difficult to
interpret the results of this analysis. It is easier to interprete
such results at a reduced system complexity. Purely resistive
systems with harmonics generating loads (HGLs) are just
such systems with a reduced complexity. The IRP p−q
theory was formulated, according to Akagi et al. [1, 2]
without any constraints, thus also for purely resistive
systems. Such systems are a subset of the set of the systems
for which the conclusions of the IRP p−q theory are valid.
Therefore all these conclusions will apply to a system if it
is purely resistive. At the same time, any conclusion that is
not valid in a resistive subsystem will not be valid in the
whole set of the systems for which the IRP p−q theory was
formulated. Therefore the restrictions of the IRP p−q theory
are investigated in this paper for purely resistive systems.
The restrictions of that theory which have to be satisfied for
such resistive systems have to be obeyed, of course, by
more complex systems.
The supply currents at the terminals of a harmonic

generating load (HGL) are nonsinusoidal. They can have
harmonics of the order n from a set of orders N. A
three-phase vector of such currents can be expressed in the
IET Power Electron., 2014, Vol. 7, Iss. 9, pp. 2201–2208
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form of

i(t) =
∑
n[N

in(t) (10)

The load generated current harmonics, because of the source
internal impedance, can cause the load voltage distortion.
When a source is strong, this distortion can be neglected. It
is assumed in this section that indeed the supply source is
strong enough, so that the load voltages are sinusoidal,
meaning composed of only the fundamental harmonic,
u1(t). It is assumed, moreover, that these voltages are
symmetrical and of the positive sequence.
At such assumptions the formula for the instantaneous

active power p can be expressed as follows

p = uTi = uT1
∑
n[N

in =
∑
n[N

uT1 in =
∑
n[N

pn (11)

where

pn = uRT1iRn + uST1iSn (12)

Also, the IRP q can be expressed as the sum of this power for
the individual harmonics, namely

q = uaib − ubia

=
��
3

√
(uRiS − uSiR)

=
��
3

√
uR1

∑
n[N

iSn − uS1
∑
n[N

iRn

( )

=
��
3

√ ∑
n[N

uR1iSn −
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uS1iRn

( )

=
∑
n[N

qn

(13)

where

qn =
��
3

√
uR1iSn − uS1iRn
( )

(14)

Let us calculate the instantaneous powers of a resistive
balanced load, shown in Fig. 2, supplied from a source of
the sinusoidal symmetrical voltage such that the
line-to-ground voltage at the terminal R is equal to

uR = uR1 =
��
2

√
U1 cos v1t (15)
Fig. 2 Resistive balanced HGL generating the fifth-order current
harmonic
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that generates the fifth-order current harmonic, assuming that

iR =
��
2

√
I1 cosv1t +

��
2

√
I5 cos (5v1t + a5) (16)

At such assumptions, the line-to-line voltages have the
waveforms

uRT1 =
��
6

√
U1 cos v1t − 300

( )
uST1 =

��
6

√
U1 cos v1t − 900

( )
Since the fifth-order current harmonic is a negative sequence
harmonic, then

iS =
��
2

√
[I1 cos (v1t − 1200)+ I5 cos (5v1t + a5 + 1200)]

(17)

At such conditions, the instantaneous active power is equal to

p = uRTiR + uSTiS

= 2
��
3

√
U1 cos (v1t − 300)[I1 cosv1t + I5 cos (5v1t + a5)]

+ 2
��
3

√
U1 cos (v1t − 900)[I1 cos (v1t − 1200)

+ I5 cos (5v1t + a5 + 1200)]

= 3U1I1 + 3U1I5 cos (6v1t + a5)

= p1 + p5
= �p+ p̃

(18)

The calculated instantaneous active power is decomposed in
(18) directly into the constant and the oscillating
components. These two components were obtained
explicitly only because the waveforms of the voltages and
the currents as well as the rms values U1, I1 and I5 were
assumed to be known. Without the Fourier analysis these
values are not known explicitly, however. When the IRP
p−q theory is used for a compensator control, these powers
are calculated, according to the IRP p−q theory definition
by a digital signal processing (DSP) system. It has a
sequence of voltages and currents samples as the input data
which are next used for calculating the voltages and the
currents in the α and β coordinates, according to the matrix
formulae (7) and (8). The constant and the oscillating
components, �p and p̃, are not seen explicitly in the
instantaneous power p calculated by the DSP system,
however. A low-pass or a high-pass filter is needed for
the decomposition of this power into the constant and the
oscillating components. The result of the filtering for the
situation as discussed has the form

�p = A, p̃ = B cos (6v1t + a5) (19)

but it is not known what contributes to the A and B values.
The IRP of such a load, according to (13) is

q = q1 + q5 (20)

where

q1 = 0

because the load shown in Fig. 2 is balanced for the
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Fig. 3 Balanced HGL generating the seventh-order current
harmonic

Fig. 4 Resistive balanced HGL generating the fifth and the
seventh-order current harmonic
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fundamental harmonic and is purely resistive, whereas
according to formula (13)

q5 =
��
3

√
(uR1iS5 − uS1iR5)

= 2
��
3

√
U1{ cosv1t[I5 cos (5v1t + a5 + 1200)]

− cos (v1t − 1200)[I5 cos (5v1t + a5)]}

= 3U1I5 sin (6v1t + a5 + p)

(21)

To check how the order n of the load originated current
harmonic affects the instantaneous powers, let us assume
that all the other parameters of the circuit in Fig. 2 are kept
unchanged, but instead of the fifth-order harmonic, the load
shown in Fig. 3, generates the seventh-order current
harmonic.
Since the seventh-order current harmonic is of the positive

sequence the current in line S is

iS =
��
2

√
I1 cos (v1t − 1200)+ I7 cos (7v1t + a7 − 1200)
[ ]

(22)

The instantaneous active power of the fundamental harmonic,
p1, remains unchanged, whereas

p7 = uRT1iR7 + uST1iS7

= 2
��
3

√
U1I7{ cos (v1t − 300) cos (7v1t + a7)

[ ]
+ cos (v1t − 900)[ cos (7v1t + a7 − 1200)]}

= 3U1I7 cos (6v1t + a7) = p̃

(23)

Thus, the change in the order of the load generated current
harmonic from n = 5 to n = 7 does not affect the
instantaneous active power. After filtering the DSP output
signal we obtain as previously

�p = A, p̃ = B cos (6v1t + a7) (24)

thus, only the initial phase angle can be different, meaning,
equal to α5 or α7.
The IRP associated with the presence of the seventh-order

load originated current harmonic is

q7 =
��
3

√
(uR1iS7 − uS1iR7)

= 2
��
3

√
U1{ cosv1t[I7 cos (7v1t + a7 − 1200)]

− cos (v1t − 1200)[I7 cos (7v1t + a7)]}

= 3U1I7 sin (6v1t + a7)

(25)

thus, only the phase of this power is affected, but not its
frequency.
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The loads in Figs. 2 and 3 are different loads.
Unfortunately, they cannot be distinguished in terms of the
IRP p−q theory, however. In terms of the p and the q
powers these two loads are identical.
Now, let us assume that the load generates both the fifth

and the seventh-order current harmonics. The circuit is
shown in Fig. 4.
The oscillating component of the instantaneous power for

such a load is

p̃ = p5 + p7

= 3U1 I5 cos (6v1t + a5)+ I7 cos (6v1t + a7)
[ ]

(26)

while the IRP is

q̃ = q5 + q7

= 3U1 I5 sin 6v1t + a5 + p
( )+ I7 sin 6v1t + a7

( )[ ]
(27)

Formulae (26) and (27) show that the oscillating components
of the instantaneous active and reactive powers are not
associated with the particular power properties of the load,
but only with the rms values of the harmonics, I5, I7, and
their phases α5, α7. In particular, if

I7 = I5 and a7 = a5 (28)

then

q̃ ; 0, p̃ = 2p5 = 6U1I5 cos (6v1t + a5) (29)

while if

I7 = I5 and a7 = a5 + 1800 (30)

then

p̃ ; 0, q̃ = 2q5 = −6U1I5 sin (6v1t + a5) (31)

Observe that the conditions (28) and (30), for the initial phase
angle of the load current harmonics, do not affect the power
properties of the system. They affect the instantaneous
powers p and q, however. If ‘plying’ with these angles
changes the instantaneous p and q powers, then, it does not
seem that these powers might be associated with any power
property of the loads considered.
IET Power Electron., 2014, Vol. 7, Iss. 9, pp. 2201–2208
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Fig. 5 Resistive balanced load supplied with voltage composed of
the fundamental and the fifth-order harmonic

Fig. 6 Balanced load with asymmetrical supply voltage
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4 Instantaneous p and q powers of the
purely resistive loads at the nonsinusoidal
supply voltage

Now, let a resistive balanced load, shown in Fig. 5, be
supplied with the symmetrical voltage distorted by the
fifth-order harmonic.
Assuming that the voltage at the terminal R is

uR =
��
2

√
U1 cosv1t +

��
2

√
U5 cos 5v1t (32)

the instantaneous active power of the load, according to
formula (5) is equal to

p = uTi = uTGu = G[u1 + u5]
T[u1 + u5]

= GuT1u1 + GuT5u5 + G uT1u5 + uT5u1
( ) (33)

The first two terms are the constant components of the
instantaneous power

GuT1u1 + GuT5u5 = G||u1||2 + G||u5||2 = P (34)

The last term is equal to

G uT1u5 + uT5u1
( ) = G u1Ru5R + u1Su5S + u1Tu5T

[ ]
+ G u5Ru1R + u5Su1S + u5Tu1T

[ ]
= 2G u1Ru5R + u1Su5S + u1Tu5T

[ ]
= 4GU1U5[ cosv1t × cos 5v1t

+ cos (v1t − 1200)× cos (5v1t + 1200)

+ cos (v1t + 1200)× cos (5v1t − 1200)
]

= 6GU1U5 cos 6v1t

(35)

Consequently, the instantaneous power of the load is

p = �p+ p̃ = P + 6GU1U5 cos 6v1t (36)

The IRP of such a resistive balanced load is, of course, equal
to zero at any instant of time, meaning

q̃ ; 0 (37)

Thus, the instantaneous powers of the resistive load shown in
Fig. 5, when supplied with the nonsinusoidal voltage given by
formula (32), do not differ in terms of the IRP p−q theory
from an HGL as shown in Fig. 4, with the sinusoidal
supply voltage, assuming that the generated current
harmonics satisfy the condition (28) at α5 = 0.
After filtering the instantaneous p and q powers calculated

according to the IRP p−q theory, the results for the circuits
IET Power Electron., 2014, Vol. 7, Iss. 9, pp. 2201–2208
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shown in Figs. 4 and 5 have the same form, given by the
formula (19) or (24), with the IRP equal to zero. Con
sequently, these two substantially different circuits cannot be
distinguished in terms of the instantaneous p and q powers.
This observation is important also for the IRP p−q theory
applications as a control algorithm. The loads in Figs. 4 and
5, having identical p and q powers, are substantially different
as to the needs and the possibilities of their compensation.

5 Oscillating component of
the instantaneous active p power

According to the IRP p−q theory, the instantaneous active
power p of the ideal loads, meaning the resistive balanced
loads that do not generate the harmonics, is constant. The
oscillating component, p̃, of this power is regarded, therefore
as a component that occurs when the load is not ideal. It can
be reduced according to Akagi et al. [1, 2], by a shunt
compensator. This is indeed true for the loads shown in
Figs. 2–4. The load in Fig. 5 is an ideal load, however,
which supplied with a voltage composed of the fifth-order
harmonic has a non-zero oscillating component of the
instantaneous active power p, given by the formula (35). The
same applies to the ideal loads supplied with asymmetrical
voltage. To show this, let us calculate the instantaneous
active power p of a balanced resistive load, shown in Fig. 6,
supplied with the asymmetrical supply voltage composed of
the positive sequence symmetrical component up and the
negative sequence symmetrical component un.
The instantaneous active power of the load is

p = uTi = uTGu = G[up + un]T[up + un]

= G[upTup + unTun]+ G[upTun + unTup]
(38)

The first term of this expression is the sum of the active
powers of the positive and the negative sequence
symmetrical components, namely

G[upTup + unTun] = Pp + Pn = P (39)

The second term of the formula (38) can be rearranged as
follows

G upTun + unTup
( ) = G upRu

n
R + upSu

n
S + upTu

n
T

( )
+G unRu

p
R + unSu

p
S + unTu

p
T

( )
= 2G upRu

n
R + upSu

n
S + upTu

n
T

( )
= 4GU pUn cosv1t × cosv1t

[
+ cos v1t − 1200

( )× cos v1t + 1200
( )

+ cos (v1t + 1200)× cos v1t − 1200
( )]

= 6GU pUn cos 2v1t

(40)
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Consequently

p = P + 6GU pUn cos 2v1t (41)

Inspite of the presence of the oscillating component in the
instantaneous active power p, such a load does not need, of
course, any compensation for improving its properties. It is
the best load possible.
Fig. 8 Orientation of the electric and the magnetic field intensities
and the Poynting vector

Fig. 7 Physical meaning of the instantaneous active and reactive
powers
6 IRP p−q theory constraints

The IRP p−q theory was developed in [1] for providing the
fundamentals for the control algorithems of the shunt active
power filters, capable of reducing the supply current
harmonics originated HGL, the reactive current and the
unbalanced current, it means, for reducing the harmful
components of the supply current, caused by the specific
unfavourable properties of the electrical loads.
Such algorithms are formulated by the IRP p−q theory in

terms of the instantaneous p and q powers, which are the
linear forms, F, of various products of the supply voltages
and the load currents or their transforms to the α and β
coordinates, namely

p = Fp{ux × iy}, q = Fq{ux × iy}

where the indices x and y can denote α, β, R, S, RT or ST.
Therefore these powers are affected in the same degree by

the supply voltage and by the load current. Consequently, it is
not possible to conclude without additional information,
whether some components in these powers occur because
of some features, such as the harmonics and/or the
asymmetry of the load current or in the supply voltage.
These components of the instantaneous p and q powers can
be associated distinctively with the load properties, only on
the condition that the supply voltage is sinusoidal and
symmetrical. Only at such a condition the conclusions of
the IRP p−q theory when applied to shunt compensation
are valid. The claim that this theory is valid for any
condition is not true. Symmetry and the lack of the
harmonics in the supply voltage is a necessary condition for
drawing conclusions from the values of the instantaneous
active and reactive p and q powers on the load power
properties. Unfortunately, as shown in Sections 3 and 4, the
symmetry and the lack of the harmonics in the supply
voltage is not a sufficient condition for such conclusions.
Even at the symmetrical and the sinusoidal supply voltage,
different loads can have the same instantaneous active and
reactive p and q powers. This is to some extent a debatable
question, however. The question is: ‘are loads that generate
harmonics of different orders n, different or not for the IRP
p−q theory?’
7 IRP q interpretation

To have a cognitive value, a power theory should provide a
physical interpretation of the quantities used by that theory
for describing the power properties. This applies of course
to the IRP q.
The physical meaning of the IRP q was not provided, in the

early papers on the IRP p−q theory [1, 2]. The only
explanation of the physical meaning of the q-power,
presented in [2] was:
2206
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‘The instantaneous imaginary power q was introduced
on the same basis as the conventional instantaneous
real power p in three-phase circuits, and then the IRP
was defined with the focus on the physical meaning
and the reason for naming.’

This sentence does not explain the physical meaning of the
IRP q, however. Such an interpretation was provided in [18,
20], namely

‘…the imaginary power q is proportional to the quantity
of energy that is being exchanged between the phases of
the system…’

‘figure’..’ summarises the above explanations about the
real and imaginary powers.’

This figure with the original caption, copied from Akagi et al.
[20], is shown in Fig. 7.
The presented explanation does not fit Fig. 7, however. The

arrow of the q-power suggests energy rotation rather than
energy exchange between the phases. Since this is not clear,
we should verify if any of these flows of energy is possible.
The flow of energy in the electromagnetic fields was

described by J.H. Poynting in 1884. The energy flows

along the Poynting vector P
�

, which is a vector product of
the electric and the magnetic field intensities, �E and �H ,
namely

�P = �E × �H (42)

It is perpendicular to each of them, as shown in Fig. 8.
The applications of the Poynting vector concept for

describing the power properties and the energy flow in the
power systems are analysed in [19].
The q-power cannot represent the energy rotation as

suggested in Fig. 7, since the Poynting Vector cannot be
parallel to the magnetic field intensity �H , which rotates
around the supply lines, as shown in Fig. 9.
The question sign in Fig. 9 emphasises the question: ‘is

such a situation possible?’ Of course, it is not.
Let us verify now whether ‘energy is being exchanged

between phases’, as claimed in [18, 20]. When the
conductors are ideal, meaning that their resistance can be
IET Power Electron., 2014, Vol. 7, Iss. 9, pp. 2201–2208
doi: 10.1049/iet-pel.2013.0579



Fig. 10 Orientation of the electric field intensity between the
conductors of the three-phase line

Fig. 9 Orientation of the magnetic field intensity at the point x in
the conductors plane
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neglected, then the vector of the electric field intensity �E has
to be perpendicular to the conductor surface, as shown in
Fig. 10.
The energy cannot flow from one line to another one,

meaning, be ‘exchanged between phases’, because the
Poynting Vector cannot be parallel to the vector of the
electric field intensity �E, however. Consequently, the IRP q
does not have a physical interpretation as suggested in [18,
20].
As was demonstrated in [17], this power in the systems

with the sinusoidal voltages and currents can be expressed
in terms of the power quantities used in the Currents’
Physical Components-based power theory [17, 21] as

q = −Q− D sin (2v1t + c) (43)

where Q is the common reactive power of the load, while D
is the unbalanced power, defined in [22] and c denotes the
phase angle of the load unbalanced admittance. This
formula shows that the IRP q is not associated with a
distinctively single phenomenon, but with two different
phenomena. One of them is the phase shift between the
supply voltage and the load current and consequently, the
reactive power Q. The supply current asymmetry and
consequently, the presence of the load unbalanced power
D, is the second of these phenomena. Formula (43) does
not apply to the situations where the voltages and the
currents are nonsinusoidal, however. As to the author’s of
this paper best knowledge, it is highly unlikely that a
physical interpretation of the q-power other than that,
based on (43), but valid only at the sinusoidal voltages
and current, could be found. Unfortunately, with the lack
of a physical interpretation of the IRP q, the IRP p−q
theory has a major cognitive deficiency as a power
theory. It does not explain the power related physical
phenomena in electrical systems.

8 Conclusions

The IRP p−q theory can be acknowledged as the first concept
that provided the fundamentals for switching compensator
control and very often such a control is satisfactory. There
are situations when this control can result in objectionable
effects, however. The IRP p−q theory provides the
IET Power Electron., 2014, Vol. 7, Iss. 9, pp. 2201–2208
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fundamentals for the effective algorithms of compensator
control, but it has some constraints that should be obeyed.
The instantaneous active and reactive powers provide
sufficient information for the compensator control only on
the condition that the load is supplied with symmetrical and
sinusoidal voltages. When these voltages are asymmetrical
and/or nonsinusoidal then, the symmetrical and the
sinusoidal component of the supply voltage can be
separated by a DSP system for the compensator control.
Instantaneous powers p and q calculated by using these
filtered voltages are not equal to the instantaneous powers
of the load, because the load is not supplied by the filtered
voltages, however. Consequently, a compensator is not
capable of fulfilling its objectives. In particular, the constant
value of the instantaneous active power p could be an
objective of compensation only if the supply voltages are
sinusoidal and symmetrical. The oscillating component of
the instantaneous active power should be compensated only
if it is caused by the load asymmetry and/or the load
generated harmonics, but not when it is caused by the
supply voltage asymmetry and/or the harmonics.
The IRP p−q theory has major deficiencies as a power

theory from a cognitive perpective. The q-power is not
associated with any physical phenomenon in the system.
The oscillating components of the p and q powers can
occur or disappear for a reason of secondary importance
such as a change of a harmonic phase angle. Such a
change does not affect the power properties of the
electrical loads.
There is some level of awareness in the electrical

engineering community involved in the development of
switching compensators, that the supply voltage asymmetry
and/or the harmonics can disturb the expected results of the
compensation. These disturbances depend, of course, on the
level of asymmetry and distortion. They could be
neglectably small, accepted, or even an operator of the
compensator might not be aware of them. This paper
provides an explanation as to why these disturbances occur.
By a contribution to a better comprehension of the IRP p−q
theory fundamentals, the paper should contribute to an
improvement in the switching compensators’ technology,
includeing this, based on the IRP p−q control.
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