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Abstract: - The views that the energy oscillations between 

supply sources and loads are responsible for the degradation of 
the effectiveness of the energy transfer are very common in the 
power engineering community. A suggestion by the Instantaneous 
Reactive Power p-q Theory that such oscillations should be remo-
ved by a compensator, can result in an erroneous control of swit-
ching compensators. The paper shows that energy oscillations do 
not affect the energy transfer effectiveness, however. The roots of 
this major misinterpretation are discussed as well.  

The physical meaning of the reactive power is also investigated 
in the paper, with the conclusion that there is no physical pheno-
menon that could be described in terms of the reactive power. 

Key words: instantaneous power, CPC, Current’s Physical 
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I. INTRODUCTION 
 The energy oscillations between the electric energy provi-
ders and consumers of that energy are usually blamed by the 
power engineering (PE) community for degradation of the 
effectiveness of the energy transfer. There are also opinions [2, 
10, 14, 16, 18, 19] that harmonics contribute to these oscilla-
tions. The energy transfer effectiveness is specified by the 
power factor λ = P/S. Opinions that the energy oscillations are 
responsible for its decline are very common. These oscillations 
are often regarded in the PE community as the cause of 
reactive power.  
 Such opinions are incorrect, however. In fact, there is no 
relation between the value of the apparent power S of the 
energy provider and the energy oscillations. Because aware-
ness of this in the PE community seems to be not very 
common, this paper will demonstrate that indeed, the energy 
oscillations do not contribute to the apparent power S and, in 
particular, to the reactive power Q increase. 
 Although the right interpretation by the PE community of 
the power-related physical phenomena in electrical systems 
would be, in general, for the state of knowledge beneficial, [12, 
14], nonetheless, some misinterpretations may have no nega-
tive technical consequences. There are situations, however, in 
which the opinion that the energy oscillations degrade the 
power factor λ leads to wrong technical conclusions. For 
example, the control of an active power filter, used for the 
power factor improvement, requires according to the Instan-
taneous Reactive Power (IRP) p-q Theory [8], that the filter 
compensates the oscillating component of the instantaneous 
active power p, thus the filter eliminates the energy oscillation. 
This leads, as demonstrated in [15, 17], to an erroneous control 
of the device, which instead of improving the power factor, can 
degrade it.  
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Because the energy oscillations are commonly associated 
with the concept of the reactive power Q, which is a misinter-
pretation of physical phenomena in electrical systems, possible 
physical interpretations of this power are discussed in the paper 
as well. Eventually, the paper presents the concept of the reac-
tive power in the frame of the Currents’ Physical Components 
(CPC) – based power theory [9, 20] which is currently the 
most advanced power theory of electrical systems. 

I. ROOTS OF POWER PHENOMENA  
MISINTERPRETATIONS 

 Misinterpretations in the PE community of the power-
related phenomena with respect to the energy oscillations are 
so common, that the questions “why and how they have 
occurred” seems to be a very natural question.  
 As to the author’s opinion, drawn from his teaching experi-
ence and textbooks on electrical circuits, they have occurred 
because explanations of power phenomena in university cour-
ses are usually confined to power-related phenomena in single-
phase, linear, time-invariant (LTI) circuits with a sinusoidal 
supply voltage. These explanations are next extrapolated to 
three-phase systems, regarded usually as a sort of aggregates of 
three single-phase systems. It is suggested that interpretations 
valid in single-phase LTI systems, are valid also in three-phase 
systems. But such an extrapolation is not valid, however. To 
show this, let us consider the instantaneous power p(t) of a 
single-phase load, shown in Fig. 1. 

 
Fig. 1. A single-phase load. 

The instantaneous power p(t) is the rate of the electric energy 
W(t) flow to a space S that confines the load in such a way that 
this energy can flow to that space only through the load termi-
nals with the voltage u(t) and the current i(t), namely      

( ) = ( ) = ( ) ( )dp t W t u t i tdt .                         (1) 

When at the load terminals 

( ) = 2 cosu t U tω ,        ( ) = 2 cos( )i t I tω ϕ−  
then the instantaneous power is 

u b( ) = ( ) ( ) = 2 cos cos( ) = ( ) + ( )p t u t i t UI t t p t p tω ω ϕ−      (2) 

where 
u( ) = (1 cos2 )p t P tω+                          (3) 

mailto:lsczar@cox.net


b( ) = sin 2p t Q tω .                               (4) 

Decomposition (2) of the instantaneous power into an unidi-
rectional component pu(t) and a bi-directional component pb(t), 
illustrated in Fig. 2, is commonly used for interpretation of the 
reactive power Q as the amplitude of the oscillating component 
of the instantaneous power.  

 
Fig. 2. Components of the instantaneous power. 

According to this interpretation, the energy can oscillate 
between the supply source and the load only because it can 
have a capability of the energy storage in magnetic fields of 
inductors and/or electric fields of capacitors.  

This, very convincing interpretation cannot be extrapolated 
to three-phase systems, as shown in Fig. 3, however.  

 
Fig. 3. A three-phase load confined with space S. 

The instantaneous power of such a load is 

R R S S T T( ) = ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )dp t W t u t i t u t i t u t i tdt .        (5) 

Assuming at the load terminals 

R( ) = 2 cosu t U tω ,        R( ) = 2 cos( )i t I tω ϕ−  
and the voltages and currents are symmetrical of the positive 
sequence, then the instantaneous power p(t) calculated from (5)  

R R S S T T( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) = 3 cosp t u t i t u t i t u t i t U I Pϕ =     (6) 

is constant, meaning, there are no energy oscillations between 
the supply source and the load, even if the reactive power Q at 
the load terminals. 

 = 3 sinQ U I ϕ                                  (7) 
is not equal to zero. Thus, the presence of the reactive power Q 
cannot be explained by the energy oscillations.  
 There are arguments that these oscillations do exist, how-
ever, but they are only not visible in the instantaneous power 
p(t), because of mutual cancellation of the oscillating compo-
nents of the instantaneous powers of individual supply lines. 
Indeed, each product, uR(t)iR(t), uS(t)iS(t), uT(t)iT(t), can be 
expressed in form (2), meaning, with the oscillating compo-
nent. This, apparently convincing argument, is not valid, how-
ever. These voltage-current products, calculated for individual 
R, S, and T terminals, are not instantaneous powers. To be ins- 
tantaneous powers, these products have to be the rate of the 
energy flow. The energy is delivered to a whole three-phase 

load, but not to its sort of single-phase segments. Such seg-
ments do not exist. As shown in Fig. 4, it is not possible to 
separate an isolated space, say SR, from the three-phase 
system, to which the energy would be delivered by the voltage 
and current at only one terminal R. 

 
Fig. 4. Separation of a space SR from a three-phase system. 

Moreover, any node can be assumed in a three-phase system as 
a reference node. If this would be the only ground, it can be 
grounded, with no effect upon the energy flow in the system. 
Let the terminal R is grounded, as shown in Fig. 5, so that 

R R R( ) 0,   ( ) ( ) 0u t u t i t≡ ≡                           (8) 

but this does not change the instantaneous power p(t) at the 
load terminals.  

 
Fig. 5. A three-phase system with grounded terminal R. 

Thus, although such individual voltage-current products have 
oscillating components, these products are not the 
instantaneous powers. Their oscillating component stands only 
for a mathematical, but not a physical entity. It does not 
describe the energy flow. It means that the presence of the 
reactive power Q in three-phase systems is not caused by the 
energy oscillations. 
 The rationale, drafted above, demonstrates that the 
presence of the reactive power in three-phase systems with 
sinusoidal voltages and currents does not cause any oscillations 
of the energy. Such oscillations can occur, however, but due to 
differ-rent reasons. Let us show this.  
 The supply current i(t) of any LTI three-phase load sup-
plied from a source of symmetrical sinusoidal voltage u(t) can 
be decomposed into the active reactive and unbalanced cur-
rents. The load can be specified in terms of line-to-line admit-
tances YST, YTR, and YRS which can be calculated having 
measured the complex rms values of the load voltages and 
currents at the load terminals. Let us assume that  
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the reactive current 
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and the unbalanced current 
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such that  
a r u= + +i i i i .                               (12) 

In these formulae  

e ee eRe{ },    Im{ }G BY Y= =                    (13) 

where Ye is the equivalent admittance of the load, equal to 

e ST TR RSY Y Y Y= + +                         (14) 
and 

120
u u ST TR RS

o
{ },   = 1j jY e * eY Y Y YΨ α α α= = − + +        (15) 

is the unbalanced admittance. Having the current decompose-
tion (12), the instantaneous power p(t) can be decomposed into 
three instantaneous powers associated with the presence of the 
active, reactive and unbalanced currents, namely 

T T
a r u

a r u

( )( ) ( ) ( ) ( )

                    ( ) + ( ) + ( ).                        (16)

dW tp t t tdt
p t p t p t

= = = + + =

=

u i u i i i  

These powers, taking into account (8) – (11), are equal to 
T

a a( )p t P= =u i                          (17) 

T
r r( ) 0p t = =u i                           (18) 

T 2
u u u R( ) = 3 cos(2 )p t Y U tω Ψ= +u i .              (19) 

Thus, there is an oscillating component in the instantaneous 
power, meaning the rate of the energy flow. It is not caused by 
the reactive, but by the unbalanced current, however, meaning 
by the load imbalance. The presence of the energy oscillations 
was concluded by Steinmetz [1] and gave him a starting point 
for the development of the first compensator for the load bala-
ncing, known as the Steinmetz Circuit. Its structure and para-
meters were selected in such a way that these energy oscil-
lations were compensated. It does not mean, however, that 
these oscillations contribute to the power factor decline. It dec-
lines because of the presence of the unbalanced current which 
increases the supply current three-phase rms value 

2 2 2
a r u|| || = || || +|| || +|| ||i i i i .                   (20) 

Energy oscillations only indicate the presence of the unbalan-
ced current. 

II. DOES THE ENERGY OSCILLATIONS  
          DEGRADE THE POWER FACTOR? 

 It was shown in the previous Section that the power factor 
can be degraded without the energy oscillations. Now, let us 
ask a reversed question: can the energy oscillations degrade the 
power factor? To answer this question, let us consider an ideal 
purely resistive balanced load, shown in Fig. 6, supplied from a 

voltage source with symmetrical voltage distorted by the 5th 
order harmonic.  

 
Fig. 6. An ideal purely resistive balanced load. 

Since the apparent power S of such a load is equal to the active 
power P, its power factor λ = P/S is, of course, equal to one, 
independently on the supply voltage. 

Let the supply voltage is symmetrical, but distorted, say by 
the 5th order harmonic. 
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assuming for the sake of simplicity that  

 R1 1 1 R5 5 12 cos ,         2 cos5u U t u U tω ω= = .            (21) 

The load current at such a supply contains the 5th order harmo-
nic and can be presented in the form 
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with  

R1 1 1 R5 5 12 cos ,         2 cos5i GU t i GU tω ω= = .            (23) 

At such a voltage, the instantaneous power p(t) is equal to 

T T
1 5 1 5( ) = ( ) = ( ) ( ) = [ ] [ ]dp t W t t tdt ⋅ + ⋅ +u i u u i i .         (24) 

It can be rearranged to the form 



T T T T T
1 5 1 5 1 1 5 5 5 1 1 5

1 5 1 5 1

( ) = [ ] [ ] = 

              = 6 cos6                    (25)

p t

P P GU U t p + pω

+ ⋅ + + + + =

+ + =

u u i i u i u i u i u i
 

where P1 and P5 denote the active power of the 1st and the 5th 
order harmonics. This formula shows that, in spite of the unity 
power factor, the instantaneous power p(t) of such a load has 
the oscillating component 



1 5 1 6 cos6p GU U t .ω=                          (26) 
Thus, oscillations of the energy delivered to such a load does 
not degrade the effectiveness of this delivery.  

According to the Instantaneous Reactive Power p-q Theory 
[8] which provides theoretical fundamentals for the control of 
the switching compensators, commonly known as “active 
power filters”, the instantaneous power p(t) after compensa-
tion should be constant, however. It means that the com-
pensator should load the system with the instantaneous reactive 
power q and the negative value of the oscillating component of 
the instantaneous active power, which is identical with the 
instantaneous power p(t), as this is illustrated in Fig. 7. Unfor-
tunately, the compensator that reduces this oscillating compo-
nent of the instantaneous power has to load the system, as it 



was demonstrated in [15], with the current 
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which not only reduces the power factor λ, originally equal to 
λ = 1 but also causes the supply current distortion with a non-
periodic current. 

 

Fig. 7. A system with a switching compensator controlled, 
 according to IRP p-q Theory. 

 A similar situation occurs when the ideal three-phase load, 
shown in Fig. 6, is supplied from a source of an asymmetrical 
voltage. Let the supply voltage is sinusoidal, but asymmetrical 
due to a negative sequence symmetrical component, namely 
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At such a supply voltage, the load current is also asymmetrical, 
namely 

p n p nG G .= + = +i i i u u                    (29) 
The instantaneous power p(t) is equal to 

T Tp n p n( ) = ( ) = ( ) ( ) = [ ] [ ]dp t W t t tdt ⋅ + ⋅ +u i u u i i          (30) 

and it can be presented in the form 
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where Pp and Pn denote the active power of the positive and 
the negative sequence symmetrical components of the voltages 
and currents. This formula shows that, in spite of the unity 
power factor, the instantaneous power p(t) of such a load at 
asymmetrical supply voltage has the oscillating component 



1 5 1 6 cos2p GU U tω= .                         (32) 

Its compensation, according to the IRP p-q Theory, causes that 
the system is loaded with the current which, for example, in 
line R has, as demonstrated in [17] the waveform 
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It reduces the power factor and causes a distortion of the sup-
ply current. 

 This section demonstrates that the energy oscillations do 
not cause degradation of the effectiveness of the energy trans-
fer in electrical systems thus, they do not degrade the load 
power factor. Just the opposite, attempts of elimination of these 
oscillations by a compensator controlled according to the IRP 
p-q Theory, degrades the power factor.  

III. REACTIVE POWER IN TIME-VARYING LOADS 

 It was shown in Section II, that there is a relation, expres-
sed in formula (4), between the reactive power Q and the 
energy oscillations. This power occurs to be the amplitude of 
the energy oscillations. This relationship could be misleading, 
however. The reactive power can occur also in circuits with 
only a unidirectional flow of energy. To show this, let us 
consider a purely resistive load with a TRIAC, shown in Fig. 8, 
supplied from an ideal source of a sinusoidal voltage.   

 

Fig. 8. A purely resistive circuit with a TRIAC. 

The supply voltage and the current in this circuit are shown in 
Fig. 9. Observe that the current has to have the same sign as 
the supply voltage, so that the instantaneous power p(t) cannot 
be negative, meaning the energy cannot flow back to the sup-
ply source.  

 
Fig. 9. The voltage and current waveforms in the circuit with TRIAC. 

In spite of that, there is the reactive power Q in this circuit. At 
the assumption that  

1( ) = 220 2 sin   Vu t tω  
the load resistance is R = 1 Ω, and the TRIAC’s firing angle 
α = 1350 , a varmeter connected as shown in Fig 10 shows the 
reactive power Q to be equal Q = 7.7 kvar. 

 

Fig. 10. Meters reding in the circuit with TRIAC.  

In the lack of the energy oscillations or the energy storage 
in the load that would justify the presence of the reactive 
power, it is present in that circuit because the current funda-
mental harmonic i1(t) is shifted with respect to the supply vol- 



tage u(t), as it is shown in Fig. 11. Indeed, the current funda-
mental harmonic is equal to 

1 1
o

1 1 1( ) = 2 sin( ) = 40.32 2sin( 60.28 ) Ai t I t tω ϕ ω− −  
and consequently, the reactive power is 

o
1 1 1 1sin 220 40.32sin(60.28 ) = 7.70 kvarQ Q U I ϕ ×= = = . 

 
Fig. 11. The TRIAC current and its fundamental harmonic.  

This result means that even in single-phase circuits there is no 
relation between the energy oscillations or the energy storage 
and the reactive power Q. It can occur even in purely resistive 
circuits. 

IV. HAS THE REACTIVE POWER ANY PHYSICAL 
INTERPRETATION? 

With the demonstration in the previous Sections that the 
reactive power cannot be interpreted as the amplitude of the 
energy oscillations, it loses its common in the PE community 
physical interpretation. So that a very natural question occurs: 
“is any physical phenomenon in electrical circuits that can be 
explained and described by means of the reactive power?” 
 The reactive power in circuits with sinusoidal voltages and 
currents is sometimes defined with the formula 

0
4

1= ( ) ( )
T

TQ u t i t dtT −∫                             (34) 

i.e., as a mean value of a quantity that resembles an instan-
taneous power. The similarity of this definition to the define-
tion of the active power P might suggest that the reactive 
power Q is also a physical quantity. This is a wrong conclu-
sion, however. This formula defines the reactive power Q 
throughout a current shifted with respect to the voltage, i.e., by 
the quantity i(t−T/4). Such a quantity does not exist in the 
circuit, however. It is only a mathematical, but not a physical 
quantity. Only the current i(t) is a physical quantity. Thus, the 
formula (24) does not describe any physical phenomenon. 
 The reactive power Q satisfies, however, similarly as the 
active power P the Balance Principle (BP). This fact is some-
times used in the PE community to support the opinion that the 
reactive power, similarly as the active power, is a physical 
quantity. 
 There is a substantial difference between the active power 
and the reactive power as to the roots on which the BP for 
these two powers is founded. The BP for active powers is an 
immediate conclusion from the Energy Balance Principle 
(EBP), one of the fundamentals of physics. The BP for the 
reactive power cannot be concluded from the EBP, however. It 
is a conclusion from the Tellegen Theorem [4]. 

The Tellegen Theorem describes the following property of 
electrical circuits, as it is shown in Fig. 12.  

Let us suppose that there are two entirely different circuits,  

but of the same topology, i.e., these circuits have the same 
number of nodes which are connected in the same way by K 
branches. Branches can be entirely different. 

 

 
Fig. 12. Two circuits of the same topology. 

Let us create a product of the k-branch voltage from the 
first circuit (a) and the k-branch current from the second circuit 
(b). According to the Tellegen Theorem, a sum of such pro-
ducts for all K branches is equal to zero, i.e.,  

a b
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k k
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The Balance Principle for reactive powers can be concluded 
from the Tellegen Theorem as follows. Let both circuits in Fig. 
12 have identical branches, but source voltages and source cur-
rents in circuit (b) are shifted with respect to source voltages 
and source currents in circuit (a) by a quarter of the period T. 
Consequently, all branch currents in the circuit (b) identical, 
but shifted by T/4 with respect to branch currents in the circuit 
(a), i.e.,  

b a( ) ( )4k k
Ti t i t≡ − .                                (36) 

Hence from the Tellegen Theorem 
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Thus, the reactive power, defined by (34), satisfies the BP. The 
Tellegen Theorem does not describe any physical phenomena 
in the circuit, however, because in that the Tellegen Theorem 
the voltages and currents are taken from different circuits. The 
Balance Principle for the reactive power Q does not have any 
physical, but only mathematical roots. In this respect, the 
active and reactive powers are substantially different. The 
opinion which suggests that from the fact that the reactive 
power satisfies the BP, we can draw a conclusion that it is a 
physical quantity, is not a convincing opinion. 
 Thus, it seems that to the present time, any physical pheno-
menon, that could be characterized by the reactive power Q, 
was not identified. 

V  REACTIVE POWER IN THE FRAME OF CPC 

 A debate in the PE community on the definition of the reac-
tive power has a long history, with hundreds of papers on it, 
with the IEEE Comte on Power Definitions, [16], with a 
biannual Int. Workshop on Power Definitions under Non-
sinusoidal Conditions in Italy and the International School on 
Nonsinusoidal Currents and Compensation (ISNCC), run bian-
nually in Poland. Several different quantities were suggested to 



be regarded as a reactive power. Some of them were suppor-
ted by international standards [6, 16]. The most known are 
those suggested by Budeanu [2], Fryze [3], Shepherd and 
Zakikhani [5], Kusters and Moore [7], Depenbrock [11] and 
Tenti [13]. An overview of these definitions with a discussion 
on their deficiencies can be found in [20].  

According to the Currents’ Physical Components – based 
power theory of electrical systems [9, 20], the reactive power 
Q is associated with the phenomenon of the phase-shift of the 
load current harmonics with respect to the supply voltage har-
monics. Due to this phase-shift, a reactive component, referred 
usually as a reactive current, occurs in the load current. This 
current is defined for three-phase systems with nonsinusoidal 
voltages as a three-phase vector of reactive currents in lines R, 
S, and T, namely 
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RrR
r rS e S
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The symbol N in formula (38) denotes a set of orders n of 
dominating harmonics, while Ben is the equivalent susceptance 
of the load for the nth order harmonic. This susceptance is the 
imaginary part of the equivalent admittance 

e RS ST TRIm{ + + } n n n nB Y Y Y=                    (39) 

of an equivalent load in ∆ configuration for the nth order har-
monic, shown in Fig. 13. 

 

Fig. 13. A load and its equivalent circuit in ∆ configuration  
      for the nth order harmonic. 

The reactive current three-phase rms value is 
2 2 2 2 2 2

r e R S T|| || = || ||      || || + +n n n n n n
n N

B , U U U
∈

=∑i u u .        (40) 

The reactive power Q is defined as a product of the supply vol-
tage and the reactive current three-phase rms values: 

r = || || || || Q u i .                                 (41) 

This definition has an analogy to the definition of the apparent 
power S in three-phase systems [9], namely 

 = || || || || S u i .                                  (42) 

Observe, that the reactive power Q, similarly as the apparent 
power S, are non-negative quantities. It can be “equipped” with 
a sign only when the voltages and currents are sinusoidal, but 
not when they are nonsinusoidal, however. The assumption 
that the reactive power is a non-negative quantity does not 
create any problems at its compensation, because the reactive 
current, not the power is the subject of compensation, and 
reduction of the reactive power is only a by-product of the 
reactive current rms value reduction.  
 

VI  CONCLUSIONS 

 The reactive power is one of a few major power quantities 
in electrical circuits and systems, unfortunately, often misinter-
preted and associated with such physical phenomena as the 
energy oscillation or the energy storage. A clarification of the 
misinterpretation of this quantity has mainly cognitive merit. 
When this misinterpretation is involved in a control algorithm 
of switching compensators, its clarification can have also prac-
tical merit. 
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