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Energy flow and power phenomena
illusions and reality
L. S. Czamecki

Contents Common opinions respective to the nature of
the reactive power, energy flow and oscillations, as well as
the notion of the apparent power in single- and in three-
phase systems are discussed in this paper. It is shown that
some interpretations of powers and energy flow in linear,
single-phase circuits are often generalized for more com-
plex situations where these interpretations are not longer
valid. Consequently, power phenomena in electrical sys-
tems are often misinterpreted. This relates to the reactive
power which occurs in three-phase systems without energy
oscillation between the supply source and the load, as well
as it occurs in time-variant systems without energy storage
capability. Also, it was demonstrated in the paper that the
arithmetic and geometric apparent powers, commonly
used in three-phase systems, do not characterize the
supply loading correctly when the load is unbalanced.

Energieflu- und Leistungs-Phanomene in elektri-

schen Schaltungen - lllusionen und Wirklichkeit
Ubersicht In dem Beitrag werden allgemeine Ansichten
iiber die Natur von Blindleistung, Energieflul und
Schwingungen sowie der Bergriff der Scheinleistung in
einphasigen und dreiphasigen Systemen diskutiert. Es
wird gezeigt, dafl einige Interpretationen der Leistung und
des Energieflusses in linearen einphasigen Schaltungen oft
fiir komplexere Fille verallgemeinert werden, wo diese
nicht mehr gelten. Folglich werden Leistungs-Phidnomene
in elektrischen Systemen haufig falsch interpretiert. Dies
bezieht sich auf die Blindleistung in dreiphasigen Syste-
men ohne Energieschwingungen zwischen der speisenden
Quelle und der Last sowie auf auf zeitvariante Systemen
ohne Energiespeicher. Es wird auch gezeight, dafl die ge-
wohnlich in dreiphasigen Systemen verwendete arithme-
tische und geometrische Scheinleistung bei Schieflast die
Belastung der Quelle nicht richtig wiedergibt.

1

Introduction

After more than a century of dealing with energy flow and
electric powers, one might take it for granted that electrical
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in electrical circuits:

engineers cannot be confused regarding power phenomena
in electrical circuits. Unfortunately, though electric energy
has become ‘blood and muscles’ of our technical civiliza-
tion, numerous publications and discussions show that the
relation between energy flow and powers is often misin-
terpreted and power phenomena in electrical circuits are
not well comprehended. Some opinions, for example, that
reactive power occurs because of energy oscillation be-
tween the source and the load, are consolidated by decades
of university teaching to such a degree that even the
question whether this is really true, may seem like a
heresy. Also, it is the authors experience that electrical
engineers when asked “what is the apparent power § in
three phase effcuits?” usually answer, that this is a
quantity calculated as

S = Uglg + Usls + Urly (1)

where U and I with indices R, S and T denote the RMS
values of the voltage and current at the load terminals.
Some of them will answer that this is the value calculated
from the formula

S=VPT@, @

where P and Q stand for the active and reactive powers of
the load. It does not mean that the right answer for some
engineers is not known. As far as in 1922 Buchholz defined
[1] the apparent power S in three-phase systems, as

S=\/1§+I§+I%\/U,%+U§+U.§, (3)

but it seems that it is still unclear for electrical engineers
why this definition is better than the former ones, espe-
cially that definitions (1) and (2), introduced in Ref. [3] are
supported by the IEEE Standard [4], while in that Standard
the Buchholz’s definition is not even mentioned. It is
rather unknown in the electrical engineers community.
Also, as long ago as in 1931, Fryze warned [2] that
oscillation of energy between a load and a supply source
could be only apparent. A conviction that there is such an
oscillation could be only an effect of a misuse of the
Fourier series. Fryze supported this conclusion with con-
siderations on power phenomena in the circuit shown in
Fig. 1. The product of the Fourier series of the voltage and
current at the supply terminals contains an infinite num-
ber of sinusoidal terms, and each of them can be inter-
preted as an oscillating component of energy flow. But
there is no flow of energy between the load and the supply
in this circuit, since the voltage and current product is
equal to zero. There is an exchange of the energy stored in
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Fig. 1. Example of a circuit without energy flow to the load
but with a non zero apparent power

the magnetic field of the closed circuit since it has a stray
inductance and energy stored in the electric field of the
open circuit since it has a stray capacitance, thus there is
an oscillation of energy at switching instants. These mar-
ginal oscillations do not account, of course, for the pres-
ence of the apparent power, actually equal to § = 5 kVA,
in such a circuit. The voltage u in the absence of current
and the current i in the absence of the voltage, that means
in intervals when there is no energy flow, contribute to this
apparent power.

The author of this paper is aware that some Readers
may find the discussed questions and conclusions quite
trivial, while other may reject them as an unacceptable
heresy, and therefore, some very fundamental concepts
related to the power phenomena in electrical circuits
should and will be investigated in this paper. After more
than a century of investigations and discussions on
power phenomena and powers in electrical circuits, some
solid conclusions should be drawn and some long lasting
misconceptions should be abandoned. Our misinterpre-
tations of power phenomena do not cause any malfunc-
tions of electrical equipment. May be, only some systems
are not properly optimized, since formulae (1), (2) and
(3) may provide different values of the power factor,

A = P/S. Most important is that our misinterpretations
do not propagate to the next generations of electrical
engineers.

2

Does reactive power occur because

of energy oscillation?

It seems that it would be difficult to find an electrical
engineer who would not provide an affirmative answer to
such a question. It is even easy to guess why there is a
common opinion that the reactive power is related to the
energy oscillation between the load and the source. This
is because the very concept of the reactive power Q is
explained very often using a linear, single-phase load
supplied with a sinusoidal voltage. In such a circuit, at
the load voltage equal to u(f) = /2U cos w;t, and the
load current i(t) = v/2I cos (w;t — @), the rate of energy
W(t) flow from the supply source to the load, that means,
the instantaneous power p(t), can be expressed in the
form:

d ;
p(t) = a—tW(r) = u(t)i(t) = P(1 + cos 2w, t) (9)
+ Qsin22w;t ,

where P denotes the active power and
Q=Ulsing , (5)

denotes the reactive power of the load.

The first term on the right side of formula (4),

P(1 + cos 2a;t), represents an unidirectional component
of the instantaneous power. It occurs even if the load is
purely resistive which means that there is no energy os-
cillation between the source and the load. The second
term, Qsin 2w, t, represents a bidirectional, that means an
oscillating component of the instantaneous power. The
reactive power Q is the amplitude of this oscillating
component. When the reactive power Q is not equal to
zero, then there are intervals of time when energy flows
from the load back to the supply source. This common
interpretation is so convincing, that the reactive power is
associated usually with the energy oscillation, irrespective
of situation.

Difficulties begin when we attempt to apply this inter-
pretation to three-phase loads. This is particularly visible
when a balanced linear load is supplied with a symmetrical
sinusoidal voltage in a three-wire system, where there is no
energy oscillation between the load and the supply source.
The load reactive power Q in such a situation, at voltages
and currents denoted as it is shown in Fig. 2, is equal to

Q = 3URIR sin @ (6)

Let us assume that the supply voltage is of a positive se-
quence, and the voltage at terminal R is equal to

ug(t) = v/2Ug cos w,t. The instantaneous power in a
cross-section between the load and the supply source is
constant in such a situation, since

p(t) = % W(t) = ug(t)ir(t) + us(t)is(t) + ur(t)ir(r)

2n
= 2UrlR [cos w, t cos(myt — @) + cos (mlt - ?)

2n 2n
X Cos a)lt—?—(p -+ cos (91t+?

2n
XCOS((Dlt"F?—(P)]

= 3Urlg cos ¢ = Const, (7)

Thus, there is no energy oscillation between the load and
the source, irrelevant of the reactive power Q of the load.

Fig. 2. Three-phase, three-wire circuit
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This is true, of course, for any single harmonic of the n-th
order. Namely, for the voltage and current harmonic of the
n-th order, expressed in a form of three-phase vectors,

URn (t) iRu (‘)

u,(t) = | usa(t) [, Ba(t) = | isa(t) | (8)
UTn (t) l'T,. ( f)

the instantaneous power of a single harmonic

pa(t) = ul(t)in(t) = Const. , (9)

where the upper index T denotes a transposed vector. The
instantaneous power of the load p(t) is not constant,
however, when the voltage is distorted. It is enough that
for a resistive balanced load, as this shown in Fig. 3, the
supply voltage contains the fundamental and the second
order harmonics, i.e., u = u; + u,, then the current vector
can be expressed as
i=i;+1i; =Gu +Gu; .
The instantaneous power is equal to
P(t) = (“'II' - l.l;) (il -+ ig) = ll}.i] + l.l}iz - ll-{i; B I.I.;I:il
= Const + 2Gu] u, (11)

Assuming, for simplicity sake, that ug,(t) = V2U, cos wyt
and ugy(t) = /22U, cos 2w, t, we obtain

Il}ll‘.lz = um(f)um(t) + us; (t)usz (I) + umn (t)uu(t)

(10)

2
=20, [cos wyt cos 2wyt + cos (mkt — ?n)

2n 2n
X €08 2m,t+—3— + cos m|t+?
2
> cos(Zmlt - —;)]

= 3U,U; cos 3wt . (12)
Thus, the instantaneous power in the cross-section
between the load and the source changes as
p(t) = Const. + 6GU, U, cos 3wyt . (13)

One could interpret this result that an oscillating com-
ponent occurs in the instantaneous power at the supply
voltage distortion. Since the load is purely resistive, the
power factor A remains equal to unity, however, and the
reactive power does not occur, in spite of the presence of
such an oscillating component in the instantaneous power.
As a matter of fact, in spite of the presence of the term
6GU, U, cos 3w, t in the instantaneous power p(t), energy

R, 'R
s & [ G
T, i \ G
.

Fig. 3. Balanced, resistive, three-phase load

does not oscillate between the supply source and the load
in the circuit considered, since the term
Const. = P = 3G(U} + U2) , (14)
and consequently, the instantaneous power p(t) cannot be
negative,

One could argue that even if the instantaneous power
p(t) is constant, there is an oscillation of energy in indi-
vidual phases R, S and T which cancel mutually, since the
products ug(t)ir(t), us(t)is(t) and ur(t)ir(t) do may have
the oscillating components. Such an explanation raises a
question, however, whether or not are these products an
instantaneous power? Indeed, it is possible to find publi-
cations where these products are considered to be the
instantaneous power of individual phases of three-phase
systems.

To be the instantaneous power, the products ug(t)ir(t),
us(t)is(t) and wur(t)ir(t) have to be a derivative of energy
of individual phases. Unfortunately, it may not be possible
to separate a single phase from the three-phase system as a
one-port and to specify its instantaneous power in terms of
the voltage and current at its terminals. It can be done for
some equivalent circuits but not for circuits with phases
mutually coupled with magnetic or electric fields. More-
over, the voltages ug(t), us(t) and ur(t), and consequently,
the products ug(¢)ir(t), us(t)is(t) and ur(t)ir(t), depend
on the reference point. Any point, even one of terminals R,
S and T can be chosen as such a point, making the re-
spective product ug(t)ir(t), us(t)is(¢) or ur(t)ir(z) equal
to zero, without affecting the power phenomena in the
circuit and the instantaneous power p(t). Therefore, such
voltage and current products for individual phases cannot
be considered as the instantaneous power. Thus, the
question of how to interpret the reactive power Q in terms
of energy oscillation in three-phase systems remains
without answer. It seems that the association of the reac-
tive power with the energy oscillation is only a misinter-
pretation of power phenomena in three-phase systems.

3

Does the reactive power occur because

of energy storage?

Asking such a question, we also can expect an affirmative
response. This is because the reactive power in single-
phase circuits with sinusoidal voltages and currents is
often interpreted in terms of the energy stored in the
magnetic fields of inductors and in the electric fields of
capacitors. Indeed, if the current of an inductor of in-
ductance L changes as i(t) = Imax 5in @;1, then the energy
stored in the magnetic field, T, of the inductor changes as

1 :
T= %Li’(r) = ELI;“ sin? ;t = Tpax sin’ oyt ,  (15)

while the reactive power of such an inductor is equal to
(16)
Similarly, if the voltage on a capacitor of capacitance C

changes as u(t) = Upnax sin @;t, then the energy stored in
the electric field, V, of the capacitor changes as

1
Q= wliLfrznu = @1 Tax -
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1
V = %Cuz(t) = ECU;.I.:Sinz ot = Vm Sil'l2 ant

(17)

while the reactive power of such a capacitor is equal to
1

Q= - ECU;“ = — ) Vinax - (18)

Thus, there is a direct relation between the reactive power
and maximum value of the energy stored in the electric
and in the magnetic fields, and consequently, a common
conviction among electrical engineers that the reactive
power is associated with the phenomenon of energy stor-
age in magnetic and/or electric fields.

Unfortunately, it is enough to have a periodic switch in
a circuit and the association of the reactive power with the
energy storage in the load becomes questionable. The
reactive power may occur in such a situation even in
circuits that do not contain devices with energy storage
capability, namely, even in a purely resistive circuit. A
resistive load with a TRIAC controlled power, shown in
Fig. 4, is a very common example of such a circuit.

Example 1. At the supply voltage u(t) = 220v/2 sin w;t [V],
the load resistance R = 2 [Q] and the TRIAC firing angle
o = 135°, the current RMS value in the circuit shown in
Fig. 4 is equal to ||i]| = 21.31 [A]. The load active power
has the value P = Ic‘.||ill2 = 908 [W] while the source
apparent power is equal to § = Uli|| = 220 21.31 =

4.69 kVA, thus, the power factor of the load has the value
of A = P/S = 0.19. The fundamental harmonic of the
supply current shown in Fig. 5 is equal to

i (f) = 13.0v/2 sin(w; t — 60°) [A] ,

thus, the supply source is loaded with the reactive power of

i(1) H/v

R
e(t) R

Fig. 4. Circuit with a TRIAC controlled load power

u';'u

0 : 2 B Tet
T4

Fig. 5. Voltage and current waveforms in the circuit with the
TRIAC controlled load power

Qi = Ul sin ¢, = 220 13.05in60° = 2.48 kVAr

while there is no device that could be able to store energy
in the load and send it back to the supply source. More-
over, since it was assumed that the supply voltage is si-
nusoidal, thus there is no reactive power in the circuit
other than only the reactive power of the fundamental
harmonic.

The reactive power Q, occurred at the lack of energy
storage capability of the load, as well as at unidirectional
flow of energy, since the instantaneous power p(t) is non-
negative. This means, that the common physical interpr-
etations of the reactive power, valid in time-invariant,
single-phase circuits, cannot be applied to three-phase
circuits, as well as to time-variant circuits.

4

Does the power factor decline because

of energy oscillations?

A probable affirmative response to such a question is a
conclusion from the common believe that the reactive
power, which reduces the power factor, is caused by en-
ergy oscillations, which as shown in previous sections,
remains questionable. In the time-variant circuit discussed
in Example 1, the power factor, defined as A = P/S is equal
to A = 0.19, in spite of the lack of energy oscillation. Also,
the power factor of three-phase balanced systems is usu-
ally lower than unity without energy oscillations even at
sinusoidal supply voltage. The power factor in three-phase
systems will be discussed in a separate section, since the
power factor is not univocally defined in such systems, so
in this Section the discussion is confined to relation be-
tween energy oscillations and power factor in single-phase
circuits.

The relationship between energy oscillations and power
factor seems to be obvious in linear, time-invariant cir-
cuits. The increase in the amplitude of the energy oscil-
lation between the supply source and the load in such
circuits, at the constant active power, P, always contributes
to the power factor, A, decline. However, quite opposite
effect can occur in circuits with time-variant parameters.
Namely, an increase in energy oscillation between the
source and the load can reduce the supply current RMS
value, and consequently, improve the power factor, 4.

Example 1 (continuation). The reactive power in the cir-
cuit shown in Fig. 4 can be compensated by a capacitor
connected as shown in Fig. 6. For the conditions assumed
in Example 1, at the total compensation of the reactive
power of the value Q; = 2.48kVAr, the supply current
fundamental harmonic is reduced to

ua_)LC !
_I,

Fig. 6. Circuit with a TRIAC controlled load power and with a
capacitor for the reactive power compensation

i(1)

e(t)

g —a0
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iy(t) = 6.5V2sinwnt [A]

while other current harmonics remain unchanged. This
reduces the supply current RMS value to ||i|]| = 18.1 [A]
and improves the power factor from the value of 4 = 0.19
to A = 0.23. It is important to note, that the power factor
improves in a situation where there are intervals of time,
as shown in Fig. 7, where the instantaneous power

p(t) = u(t)i(t) is negative, thus the energy oscillates be-
tween the compensated load and the source. Hence, energy
oscillations improve the power factor in the situation
considered.

Thus, there is no universally valid relation between
energy oscillation and the power factor. This is because
there is no universally valid relation between the instan-
taneous power p(t) and the apparent power S. Only for
linear, time-invariant circuits there is a pair of relations:

p(t) = P(1 — cos 2w, t) + Qsin 2wt (19)
$=P+Q (20)

that might suggest such a relationship. Unfortunately, this
kind of relationship between the instantaneous power p(f)
and the apparent power § cannot be specified for time-
variant or three-phase loads. Linear, time-invariant single-
phase loads are only a particular kind of loads where such
a relationship exists. The lack of any physical interpr-
etation of the apparent power S, that means, the lack of
any relationship between this power and physical phe-
nomena in the circuit is one of reasons for that. This is,
however, an issue where also there is no common con-
sensus between electrical engineers. Some engineers claim
that the apparent power has a clear physical interpretation.

5

Does the apparent power S have any

physical interpretation?

The apparent power S is one of the main power quantities
in electrical engineering. Various power equipment, for
example, transformers or breakers are rated in terms of
their apparent power. The supply capability of distribution
systems are specified in terms of their short-circuit power,
which also is an apparent power. Therefore, the question
regarding the pliysical interpretation of the apparent

u"' 'y

Fig. 7. Voltage and current waveforms in the circuit with the
TRIAC controlled load power and with a capacitor for reactive

power compensation

power is a very natural question for electrical engineers. If
the apparent power § is such an important quantity, then
what physical phenomenon in electric circuits is charac-
terized by this power?

The most established and a time-honored Lienard’s
interpretation of the apparent power in single phase cir-
cuits with sinusoidal voltages and currents was provided
by Curtis and Silsbee in Ref [5]. According to this inter-
pretation, the active power P of the load in the circuit
shown in Fig. 8, at a constant RMS value of the supply
voltage U and the constant RMS value of the supply cur-
rent I, changes with the change of the phase angle ¢ of the
load impedance Z as shown in Fig. 9. The apparent power
§ stands for the maximum value of the active power P of
the load. Since the active power P is a quantity with a clear
physical interpretation, the authors have concluded, that
the apparent power S, as the maximum value of the active
power P, also has the physical interpretation.

Unfortunately, the condition that the supply voltage
RMS value U and the supply current RMS value I, are kept
constant at a variable load phase angle ¢ cannot be sat-
isfied at the same time in real systems. Let us assume that
the supply source impedance be inductive, as shown in
Fig. 10. To keep the voltage RMS value U and current RMS
value I constant at a variable load phase requires that the
RMS value of the internal voltage E of the supply source is

I

= CU
z—pr

Fig. 8. A single-phase circuit with a load of variable impedance
Z and active power P

Supply
source

JP

-90 0 N .9
Capacitive load Inductive load
Fig. 9. Dependence of the load active power P on the load im-

pedance phase ¢ at a constant load voltage and current RMS
value, U and I

AU

. I

=Dl | P

Fig. 10. A single-phase circuit with a load of variable impedance
Z and active power P supplied from an inductive voltage source
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continuously modified as shown in Fig. 11. Thus, the ap-
parent power S does not characterize any phenomenon in
the actual circuit, but a phenomenon in a circuit with a
different load impedance Z and a different internal voltage
E. Even such an experiment that would provide the char-
acteristics shown in Fig. 9 cannot be performed in real
conditions, since customers have no access to the control
of the internal voltage E of the distribution system. Thus,
the reasoning presented in Ref. [5] does not provide
convincing physical interpretation of the apparent power
S. Consequently, the apparent power in single-phase cir-
cuits remains not a physical but a conventional quantity; a
conventional measure of the current loading at a voltage
provided by the supply source, that means, a product of
the voltage and current RMS values, namely

S=UI, (21)

or, using symbols adopted in Ref [6] for RMS values of
nonsinusoidal quantities,

S = [lullllll - (22)
Nonetheless, in spite of the lack of the physical inter-
pretation, the conventional meaning of the apparent power
§ seems to be clear, which means, that the existence of a
physical interpretation for some quantities is not so crucial
as someone seems to believe,

The matter of the apparent power definition in three-
phase systems is, however, more confusing. This is mainly
because different quantities are considered to be an ap-
parent power in three-phase systems.

Im{U, I'}

AU

| Re{U, I'}

Fig. 11. Diagram of the complex RMS values of voltages and
current in the circuit shown in Fig. 10 at a variable phase ¢ and
constant load voltage and current RMS values, U and I

6

What is the apparent power in three-phase

three-wire systems?

Asking such a question we may receive three different
answers, namely, that this is a quantity defined according
to formulae (1), (2) or (3). In order to distinguish these
definitions, indices A, G and B are allocated to the symbol
§ of the apparent power, as follows

Sa = Urlg + Usls + Uplp (23)
S¢ = VP + Q@ (24)
Sp=/R+B+B\JUi + V2 + U (25)

Essentially, these are three different power quantities: the
arithmetic apparent power, the geometric apparent power,
as defined in the IEEE Standard Dictionary of Electrical
and Electronics Terms [4] and the apparent power as de-
fined by Buchholtz in Ref. [1].

As long as the supply voltage is sinusoidal, symmetrical
and the load is balanced, these answers are not erroneous,
since these three definitions provide the same numerical
value of'the apparent power. Unfortunately, it is enough
that one of these conditions is not satisfied and serious
ambiguities may occur, because the apparent power cal-
culated with these definitions may have different values.
Consequently, the power factor, defined as the ratio of the
active and apparent powers
p=g

S
depends on the choice of the apparent power definition.
This is illustrated below on the example.

(26)

Example 2. A balanced resistive load shown in Fig. 12, is
supplied with a sinusoidal symmetrical voltage. The in-
ternal voltage RMS value of the reference phase R was
assumed to be equal to Eg = 220 V. The load and the
supply source parameters where chosen such that at the

. load active power P = 100 kW, the active power loss in the

supply source is equal to AP = 5 kW.

An unbalanced load, as shown in Fig. 13, supplied from
the same source has the same active power P = 100 kW as
the power of the balanced load when its phase-to-phase
resistance is equal to 1.173 Q. Depending on the definition
of the apparent power, its value and power factor is equal
to Sy = 119kVA, 1, = 0.84, Sg = 100kVA, i =1,

Sg = 149.4kVA, As = 0.67. Thus, the question arises,

Fig. 12. A three-phase circuit
with a balanced resistive load
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Fig. 13. A three-phase circuit with
an unbalanced resistive load but

the same active power P as the
load shown in Fig. 12

§l,l730

R 2920A
2036 v
S 2920A
2036V
T 0
=l ‘Ynov

which value and why should be chosen as the value of the
apparent power, and consequently, the power factor?

Similarly as in the case of single-phase circuits, there is
no physical phenomenon that could be characterized by
any of these three apparent powers. They represent
nothing else than only three different conventions. Thus,
on what kind of criteria the choice of the best convention
should be based upon?

When a convention is a matter of concern, we can
discuss only whether such a convention is useful or not.
The convention of the apparent power § in single-phase
circuits is well established. It is a kind of a measure of the
loading of the supply source. If i, denotes the active
component of the load current i and ||7,|| is its RMS value,
then, the load current related loss of the active power in
the supply source is equal to

. 112
- a AP.m
N @)

where R; is the equivalent resistance of the supply source.
Therefore, the power factor A that has a similar property in
three-phase systems and the apparent power that provides
such a power factor could be chosen as the best conven-
tion as to the apparent power definition.

Example 2 (continuation). In the case of the circuit con-
sidered in the Example 2, the load imbalance caused an
increase of the active power loss in the supply from 5 kW
to 11.2 kW. Since there is no differences between value of
various apparent powers when the load is balanced, let us
find what kind of a balanced load of the same active power,
P = 100 kW, causes such increase of the active power
loss in the supply source. The circuit analysis shows, that
such a property has a balanced resistive-inductive load,
shown in Fig. 14, with the phase impedance equal to

Z = 0.879¢"39°Q. Such a load has the power factor

P =100 kW

A = cos(48.0°) = 0.67 and the apparent power
§ = 149.4kVA.

Comparing these values with those for the unbalanced
load, it occurs, that the unbalanced load is equivalent with
respect the active power loss in the supply, to a balanced
load, if the apparent power S is calculated according to
Buchholz’s definition. Thus, the arithmetic and geometric
apparent powers, S4 and S, and the power factor calcu-
lated with their use, do not characterize properly the
power loss increase in the supply source due to imbalance
of three-phase loads. It can be proven, moreover, that
Buchholz’s definition can be extended to systems with
nonsinusoidal voltages and currents, with the RMS values
||x]| of three-phase vectors x(t) defined as

T

1
x| = |= [ xTxdt (28)
'/

where x = x(f) is a common symbol for the three-phase
voltages u(t) and currents i(t). These vectors can be
composed of voltage and current harmonics, as specified
with formula (8), of the order n from a set N, namely

u(t) =Y u(e), ()= ia(t) (29)
neN neN

At such symbols the apparent power S in three-phase

systems can be defined [7] as

S = [lulflil (30)

formally analogous to the apparent power definition in
single-phase systems.

7

Conclusions

Reactive power may occur in circuits without energy
storage capability and without energy oscillations between
the supply source and the load. Therefore, common

Fig. 14. A three-phase circuit with
a balanced resistive-inductive
load and the same active power P
as the load shown in Fig. 12
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interpretations of reactive power, and in particular, its
relation to energy oscillation and energy storage, con-
vincing in single-phase, linear and time-invariant circuits,
should not be extrapolated to more complex situations,
where these interpretations are not longer valid. Such
interpretations should be abandoned, similarly as the
Lienard’s interpretation of the apparent. power S. Also,
commonly used definitions of the apparent power, some-
times referred to as the arithmetic and geometric apparent
powers, do not provide information on the real loading of
the supply source and its power factor in circuits with
unbalanced loads. Definitions of the arithmetic and geo-
metric apparent powers should not be used in situations
where the load is unbalanced, since they result in an
erroneous value of the load power factor. Unfortunately, it
seems that these interpretations and definitions are so
common that their elimination from the field of electrical
engineering will not be easy.
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