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Currents’ Physical Components (CPC) of the Supply Current 
of Unbalanced LTI Loads 

at Asymmetrical and Nonsinusoidal Voltage 
 
 
 

Abstract. Power properties of unbalanced linear time-invariant (LTI) loads in three-phase three-wire circuits at asymmetrical and nonsinusoidal 
supply voltages are investigated in this paper. It is demonstrated that the supply current of such loads can be decomposed into Currents’ Physical 
Components (CPC), associated with distinctive physical phenomena in the load. The power equation is developed and it is also demonstrated how 
the current components can be expressed in terms of the supply voltage and the equivalent parameters of the load.  
 
Streszczenie. W artykule analizowane są właściwości energetyczne niezrównoważonych, czasowo-niezmienniczych (LTI) odbiorników 
trójfazowych, zasilanych napięciem niesymetrycznym i niesinusoidalnym w systemach trójprzewodowych. Pokazano, że prądy zasilania w takich 
warunkach mogą być rozłożone na składowe stowarzyszone z konkretnymi zjawiskami fizycznymi w odbiorniku, to jest na Składowe Fizyczne. 
Pokazano jak Składowe Fizyczne Prądów mogą być obliczane na podstawie znajomości napięć zasilania i równoważnych parametrów odbiornika. 
(Składowe Fizyczne Prądów (CPC) zasilania liniowych, czasowo niezmienniczych (LTI) odbiorników trójfazowych zasilanych napięciem 
niesymetrycznym i niesinusoidalnym). 
 
Keywords: power definitions, current decomposition, scattered current, scattered power, unbalanced current, unbalanced power. 
Słowa kluczowe: definicje mocy, rozkład prądu, prąd rozrzutu, moc rozrzutu, prąd niezrównoważenia, moc niezrównoważenia. 
  
 
Introduction 
 This paper extends the Currents’ Physical Components 
(CPC)-based power theory of three-phase circuits with 
unbalanced linear time-invariant (LTI) loads, supplied in a 
three-wire configuration with a sinusoidal, but asymmetrical 
voltage, which was developed in paper [19], to similar loads 
supplied with a nonsinusoidal voltage. In general, this paper 
presents some new results obtained in investigations on the 
power theory development. These studies initiated in 1892 
by Steinmetz [1], were continued for the whole XX century 
[2-12] and even now. The most important in these studies, 
due to amount of energy transferred, are power properties 
of three-phase circuits. Unfortunately, it was not possible to 
explain and describe power properties of such circuits in a 
right way before power properties of single-phase circuits 
were not explained. Moreover, studies on power properties 
of three-phase systems were substantially hampered by a 
wrong definition of the apparent power S introduced [3, 6] to 
electrical engineering by the American Institute of Electrical 
Engineers (AIEE) and supported by IEEE Standard Dictio-
nary of Electrical and Electronic Terms [15]. 
 Power properties of single-phase circuits with LTI loads 
and nonsinusoidal voltage were at last explained [13] in the 
frame of the CPC in 1984. A right definition of the apparent 
power S for three-phase circuits was selected in [16]. 
 Results presented in [13] and on [16] have created con-
ditions for the development of the power theory of three-
phase circuits. First results were obtained in 1988 [14], but 
still the development of the power theory of three-phase 
circuits is delayed with respect to practical situations. 
 The current and consequently, also the supply voltage 
asymmetry in distribution systems is mainly caused by 
aggregates of single-phase loads of different power, which 
form three-phase unbalanced loads, as it is shown in Fig. 1. 
Single-phase loads are mainly composed of fluorescent 
lumps, video and computer-like appliances or microwave 
ovens. Such devices are classified as harmonics genera-
ting loads (HGL) and cause the current and consequently, 
the voltage distortion in the distribution system. These could 

be residential distribution systems or commercial buildings 
with particular floors supplied from different phases. The 
voltage asymmetry in distribution systems can also be 
caused by high power three-phase loads that draw current 
from only one or two lines, such as for example, traction 
loads, or AC arc furnaces with an extinct arc [17, 18]. 

 

Fig. 1. Three-phase, three-wire system with aggregates of single-
phase loads 
 Power properties of three-phase LTI unbalanced loads 
in three-phase circuits with asymmetrical, but sinusoidal 
supply voltage were described, using the CPC concept, in 
[19]. Power properties of such LTI loads with asymmetrical, 
but nonsinusoidal voltage are the subject of this paper. It 
means that harmonics generating loads are approximated 
in this paper by LTI loads, i.e., it is assumed that the load 
current distortion is caused only by harmonics present in 
the supply voltage.  
 This paper can be regarded as a continuation of studies 
presented in the paper [19]. The approach to analysis of the 
power properties in terms of the CPC, as well as main 
symbols remain the same. Consequently, it would be highly 
recommended that the reader of this paper is acquainted 
with paper [19].  
 The symbols in [19] were used for description of three-
phase circuits with sinusoidal voltages and currents. These 
symbols have to be first modified to make possible of using 
them for description of similar circuits with nonsinusoidal 
voltages and currents. 
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Symbols 
 The internal voltage of the distribution system, expre-
sed in the form of a three-phase vector 

R S T
T[ , ],e e ee  

can be asymmetrical and distorted. The line voltages, 
arranged in a vector 

R S T
T[ , , ]u u uu  

are referenced to an artificial zero, as it is shown in Fig. 2, 
so that they do not contain symmetrical component of the 
zero sequence ez. The voltage at the load terminals R, S 
and T contains only the positive up and the negative un 
sequence components. 

 
Fig. 2. LTI load supplied with a voltage referenced to artificial zero 
 

We can assume that all voltages and currents, denoted 
generally by x(t), are periodic and can be expressed in 
terms of their harmonics xn(t) and presented in a complex 
form of the Fourier series, namely, as 
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0( ) ( ) 2 Re
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
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where N denotes the set of harmonic orders n and  
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( )n

T
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X      

is the complex rms (crms) value of the nth order harmonic. 
Modern measurement instruments calculate these values 
digitally. Instead of using (2), they process samples of volta-
ges or currents xk, provided by voltage or current sensors 
and analog-to-digital (A/D) converters. Such digital instru-
ments can calculate the crms values Xn using the Discrete 
Fourier Transform (DFT), namely 
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where K denotes the number of samples in one period T of 
the supply voltage variability. To avoid the spectrum alias-
ing, the number of samples per period should be, according 
to the Nyquist Criterion, higher than the double value of the 
highest order harmonic of the sampled quantity. Moreover, 
to enable reduction of calculation with the Fast Fourier 
Transform (FFT), the number of samples K per period T 
should be an integer power of 2. 
 At such assumption, the voltage vector can be expres-
sed as   
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and similarly, the vector of line currents  
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 The vector of the supply voltage u(t) as referenced to an 
artificial zero of the circuit can be decomposed into sym-
metrical components of the positive and the negative sequ-
ence as follows 
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Symbol 1p denotes a symmetrical unit vector of the positive 

sequence, while 1n denotes a symmetrical unit vector of the 
negative sequence, defined as 
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and shown in Fig. 3.  

 

Fig. 3 Three-phase symmetrical unit vectors 1p and 1n 

Symbols p n
n n,U U in (6) denote the crms values of symmet-

rical components of the supply voltage harmonic of the nth 
order. They are equal to  
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 When the supply voltage is symmetrical, then its harmo-
nics are also symmetrical and they have the sequence 
dependent on the harmonic order n. Harmonics of the order 
n = (3k+1) are of the positive sequence; harmonics of the 
order n = (3k1) are of the negative sequence and harmo-
nics of the order n = 3k are of the zero sequence. These last 
harmonics of the zero sequence are not visible in line-to-
line voltages of the load. They are visible in the line-to-
ground voltage of the supply source, however, affecting the 
three-phase rms value of that voltage ||e||. To avoid the 
effect of such zero sequence harmonics on the power 
factor, the zero sequence has to be eliminated from the 
load line voltages by referencing them to the artificial zero, 
as this is illustrated in Fig. 2. 
 When the supply voltage is asymmetrical, then the 
voltage harmonics can contain symmetrical components of 
all orders, however. In particular, the third order harmonic 
can exist both in the load voltage and its current, because 
when the supply voltage is asymmetrical, the third order 
harmonic is not exclusively of the zero sequence. It can 
have symmetrical components of the positive and the 
negative sequence as well. 
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Currents’ Physical Components (CPC) 
The load in Fig. 4(a) is equivalent with respect to active 

power P to a balanced resistive load, shown in Fig. 4(b), of 
conductance  

(9)                                  b 2|| ||

PG 
u

 

where ||u|| denotes three-phase rms value of the supply 
voltage, equal to the root of sum of squares of line voltages 
rms values, namely 

(10)                   2 2 2
R S T|| || || || || || || ||u u u  u . 

 

Fig. 4. A three-phase load and a balanced resistive load equivalent 
with respect to active power P 
 
The current of such an equivalent load is 
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and will be referred to as the active current of the load.  
According to the assumption in this paper, the load is 

linear and time-invariant, so that the current response of the 
load to this voltage can be calculated harmonic-by-har-
monic. 

The load at each harmonic frequency has the active and 
reactive powers. For a harmonic of the nth order  

(12)              T * T *Re{ },       Im{ }n n n n n nP Q U I U I . 

The load can be unbalanced for the nth order harmonic, but 
with respect to the active and reactive powers Pn and Qn at 
voltage un such a load is equivalent to a balanced load of 
the phase admittance 
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where ||un|| denotes the three-phase rms value of the nth 
order voltage harmonic, equal to  

(14)                         R S T
2 2 2|| ||n n n nU U U  u . 

The symbol „C” instead of a common symbol „S” is used in 
definition (13) to avoid a confusion of the complex power 
Pn+jQn with the apparent power Sn which can contain also 
components other than only the active and reactive powers.  
 A balanced load which is equivalent to the original one 
for the nth order harmonic with respect to active and reac-
tive powers Pn and Qn is shown in Fig. 5. 
 The supply current of such an equivalent load is com-
posed of the active current  
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and the reactive current 
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Fig. 5. A balanced load equivalent to the original one with respect 
to Pn and Qn powers of the nth order harmonic 

Admittance Ynb is admittance of an equivalent balanced 
load for the nth order harmonic, while for such a harmonic 
the load can be unbalanced. Consequently, the nth order 
harmonic of the load current in can contain the unbalanced 
current  
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It means that each current harmonic in can be regarded as 
a sum of three components  

(18)                          a r un n n n= + +i i i i  

and consequently, the load current (6) is equal to 
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occurs in the load current because of the phase-shift of the 
load current harmonics with respect to the supply voltage 
harmonics. Therefore it can be regarded as a reactive cur-
rent of the load.  

The current  

(21)                               
df

u un
n N

 i i   

occurs in the load current because of the load imbalance for 
harmonic frequencies.  

The current  
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is not the active current ia of the load, however. These two 
currents differ by  
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This difference can have a non-zero value only when the 
conductances Gnb for harmonic frequencies are different 
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than the conductance Gb of the equivalent balanced load. 
Since conductances for harmonic frequencies Gnb are 
usually scattered around Gb, therefore, the current is which 
is an effect of this scatter, will be referred to as a scattered 
current.    

Combining (11) – (23), the load current can be expres-
sed as 

(24)                             a s r u   i i i i i . 

Each of these four currents is associated with a different 
physical phenomenon in the load. The active current ia is 
associated with the phenomenon of permanent energy deli-
very, with active power P, to the load. Any other current 
component does not contribute to this transfer. The scat-
tered current is is associated with the phenomenon of a 
change of the load conductance Gnb with harmonic order n. 
The reactive current ir is associated with the phenomenon 
of a phase-shift of the load current harmonics with respect 
to the supply voltage harmonics. The unbalanced current iu 
is associated with the load imbalance for harmonic frequen-
cies. Because of this association of the load currents com-
ponents a s r, , i i i and ui with physical phenomena in the 
load, these currents are referred to as the Currents’ 
Physical Components (CPC). It does not mean that these 
currents do exist physically, however. They are mathema-
tical, rather than physical entities. Nonetheless, if any of 
above described physical phenomenon exists in the load, 
then the load current contains a component associated with 
this phenomenon. 

Orthogonality of CPC 
Current components in decomposition (24) affect the 

three-phase rms value ||i|| of the load current independently 
of each other on the condition that they are mutually ortho-
gonal, meaning that their scalar product 

(25)                     T
x v x v

0

1( , ) ( ) ( )
T

t t dt
T

 i i i i  

is equal to zero.  
 Harmonics of different order n are mutually orthogonal. 
Therefore, calculation of the three-phase rms value of quan-
tities that are a sum of harmonics is straightforward. In parti-
cular, the three-phase rms value of the reactive, scattered 
and the unbalanced currents are equal to 
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Mutual orthogonality of the active, reactive and unbalan-
ced currents in circuits with sinusoidal voltages and currents 
was proven in [19]. This applies, of course, to individual har-
monic of any order n. Therefore, the active, reactive and 
unbalanced components of the nth order harmonic of the 
load current in in decomposition (24) are mutually ortho-
gonal, i.e., 

(29)            a r a u r u( , ) ( , ) ( , ) 0n n n n n n  i i i i i i . 

The CPC in decomposition (24) are sums of harmonics. 
Because harmonics of different order r and s, are mutually  

orthogonal, then the scalar products of two currents, which 
are sums of harmonics, can be expressed generally as 
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Thus, if harmonics of the same order n of two currents are 
mutually orthogonal, i.e., x v( , )n ni i = 0, then such currents 
are orthogonal as well. Consequently, all terms on the right 
side of (24) are mutually orthogonal and hence  

(31)                    2 2 2 2
a r u|| || || || || || || ||n

n N

  i i i i . 

Since  
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the question arises, are the active and scattered currents 
mutually orthogonal or not? 

The scalar product defined by (25) in time-domain, can 
be calculated in the frequency-domain as follows 
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Therefore, the scalar product of the active and the scattered 
currents is equal to 

(34)  

T * T *
a s a s

2

2 2

( , ) Re Re ( )b b b

 ( )|| ||b b b

( || || || || ) ( ) 0b b b b

n n n n
n N n N

n
n N

n n
n N n N

G G Gn

G G Gn

G G G G P P .n

 



 

   

  

    

 



 

i i

u

u u

U UI I

 

Thus these two currents are also mutually orthogonal, so 
that the three-phase rms values of the load CPC satisfy the 
relationship 

(35)                  2 2 2 2 2
a s r u|| || || || || || || || || ||   i i i i i . 

This relationship between the load CPC three-phase rms 
values provides clear information on how specific pheno-
mena in the load contribute to the load current three-phase 
rms value increase. It increases above the minimum three-
phase rms value ||ia||, needed for permanent energy deli-
very with the averaged rate equal to the active power P; 
because of change of the load conductance Gnb with 
harmonic order; because of a phase-shift between the 
voltage and current harmonics and because of the load 
current asymmetry. The scattered, reactive and unbalanced 
currents are associated with these three phenomena. 
 It is important to observe that decomposition of the load 
current into the Currents’ Physical Components does not 
require any knowledge on the load structure and its para-
meters. It can be done based on measurements performed 
at the load terminals. Such measurement has to provide 
only the crms values of the load voltage and current harmo-
nics, i.e., the values URn, USn, UTn, IRn, ISn, and ITn. 

 Numerical illustration. The presented above current 
decomposition into CPC is illustrated numerically with the 
circuit shown in Fig. 6. This decomposition into CPC, as 
presented in the previous chapter, was obtained without 
any restrictions as to the level of the supply voltage asym-
metry, its distortion and the load imbalance. Therefore, to 
demonstrate that this decomposition is valid independently 
of the supply voltage asymmetry and distortion, and inde-
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pendently of the load imbalance, very high level of them 
was assumed in this illustration. They are much higher than 
could be observed in distribution systems. These, rather 
unrealistic assumptions, can enhance credibility of the 
developed current decomposition, however. 

 

Fig. 6. Circuit used for numerical illustration 

 It is assumed in this illustration that the internal voltage 
eR of the distribution system is 
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e t e e e e

   
     

i.e., it is strongly distorted by harmonics of the 3rd; 5th and 
the 7th order, thus the set N is equal to  

N = {1, 3, 5, 7}. 

It is assumed that the voltage at terminals S and T are:  

S R T R( ) ( 3),     ( ) 0 5 ( 3)    e t e t T/ e t . e t T/     

thus the supply voltage is strongly asymmetrical. The load 
parameters for the fundamental harmonic are assumed to 
be equal to  

RR = XR = RT = XT = 1.0 ,    BR = BT = 0.5 S. 

The load is supplied from an ideal transformer in /Y con-
figuration with the turn ratio: 3 : 1 . The line S on the trans-
former secondary side is not loaded. 
 The crms values of the zero sequence component of the 
supply voltage harmonics are equal to 
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 The crms values of harmonics of lines R, S and T volta-
ges referenced to the artificial zero are  
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while the crms values of the load current harmonics:  

R3R

S S3

T T3

R5

S5

T5

o8 9
o85 2

1 o150 0
1 1 3

o o1 160 9 94 8

o80 1

o120 1
5

o71 8

139 2
18 1

86 6 A,    0 A

66 1 18 1

128 5

79 9

61 1

j .
j .

j .

j . j .

j .

j .

j .

. e
. e

. e

. e . e

. e

. e

. e

II
I I
I I

I
I
I









 
                               

 

        



I I

I
R7

S7

T7

o98 6

o60 3
7

o109 4

93 5

A,   58 2 A.

44 4

j .

j .

j .

. e

. e

. e

I
I
I





  
             
  
  

I

 

The rms values of the line voltages and currents are shown 
in Fig. 7. 

 

Fig. 7. Rms values of the line-to-artificial zero voltages and line 
currents in the circuit shown in Fig. 6 
 
 Results of the circuit analysis with respect to the load 
equivalent parameters for harmonics and harmonic active 
and reactive powers are compiled in Table.1. 
 
Table 1. Results of the circuit analysis  

 n 1 3 5 7 
Pn W 23750 23 73 9 

Qn VAr 0 2700 43846 15960 

||un|| V 147.20 12.25 29.44 14.72 

Gnb S 1.0962 0.1500 0.0843 0.0438 

Bnb S 0 1.800 5.059 7.366 

 
 The active power of the load is P = 23855 W and the 
three-phase rms value of the supply voltage as referenced 
to the artificial zero is ||u|| = 151.33 V, so that, the equivalent 
balanced conductance of the load is 

b 2
1 0417 S

|| ||

PG . 
u

. 

Having values of equivalent parameters of the load as com-
piled in Table 1, three-phase rms values of all Currents’ 
Physical Components of the load current can be calculated, 
namely 
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The power factor of the load is equal to  
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This last result provides us with information on how specific 
properties of the load contribute to the power factor reduc-
tion, i.e., to an increase in the load current three-phase rms 
value ||i||.  
Power equation 
 Although decomposition of the load current into the 
Currents’ Physical Components and calculation or measu-
rement of all three-phase rms values of these components 
provide full information on the power properties of the load, 
these properties are commonly specified in the electrical 
engineering community in terms of powers. To meet such 
expectations, let us multiply (35) by the square of the three-
phase rms value of the supply voltage referenced to the 
artificial zero ||u||, namely    

2 2 2 2 2 2
xa s r u|| || || || || || || || || ||     || ||   i i i i i u . 

and the power equation  
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(36)                       2 2 2 2 2
s uS P D Q D     

is obtained. In this power equation  

(37)                                   S = ||u|| ||i|| 

is the apparent power, 

(38)                                   Ds = ||u|| ||is|| 

is the scattered power,  

(39)                                   Q = ||u|| ||ir|| 

is the reactive power and  

(40)                                   Du = ||u|| ||iu|| 

is the unbalanced power of the load. 

 Powers in equation (36), apart from the active power P, 
which has also a clear physical interpretation, are only 
formal products of three-phase rms values of the supply 
voltage and the load Currents’ Physical Components. None-
theless, apart from the apparent power S, all these powers 
are associated with distinctive physical phenomena in the 
load.  
Conclusions 
 This paper shows that power properties of unbalanced 
linear time-invariant loads supplied by a three-wire line from 
a source of asymmetrical and nonsinusoidal voltage can be 
described with the Currents Physical Components – based 
power theory. The supply current of such loads consists of 
four mutually orthogonal components, namely the active, 
scattered, reactive and unbalanced currents, each of which 
is associated with a distinctive physical phenomenon.  
 Presented in this paper results conclude development of 
the CPC-based power theory of three-phase circuits with 
LTI loads supplied by three-wire lines from voltage sources 
with periodic voltages.  
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